992 resultados para Primate Cerebral-cortex
Resumo:
In the cerebral cortex of cases of sporadic Creutzfeldt-Jakob disease (sCJD), the vacuolation (spongiform change) and PrP deposits are aggregated into clusters which are regularly distributed parallel to the pia mater. The objective of the present study was to determine the spatial relationships between the clusters of the vacuoles and PrP deposits and between the pathological changes and variations in the density of surviving neurons. In areas with low densities of pathological change, clusters of vacuoles were spatially correlated with the surviving neurons and not with the PrP deposits. By contrast, in more significantly affected areas, clusters of vacuoles were spatially correlated with those of the PrP deposits and not with the surviving neurons. In addition, areas with a high density of vacuoles and a low density of PrP deposits exhibited no spatial correlations between the variables. These data suggest that the spatial relationships between the vacuolation, PrP deposits and surviving neurons in sCJD depend on the density of lesions present. Differences in the pattern of correlation may reflect the developmental stage of the pathology in particular cortical areas.
Resumo:
To determine the pattern of cortical degeneration in cases of variant Creutzfeldt-Jakob disease (vCJD), the laminar distribution of the vacuolation ("spongiform change"), surviving neurones, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal lobes. The vacuolation exhibited two common patterns of distribution: either the vacuoles were present throughout the cortex or a bimodal distribution was present with peaks of density in the upper and lower cortical laminae. The distribution of the surviving neurones was highly variable in different regions; the commonest pattern being a uniform distribution with cortical depth. Glial cell nuclei were distributed largely in the lower cortical laminae. The non-florid PrP deposits exhibited either a bimodal distribution or exhibited a peak of density in the upper cortex while the florid deposits were either uniformly distributed down the cortex or were present in the upper cortical laminae. In a significant proportion of areas, the density of the vacuoles was positively correlated with either the surviving neurones or with the glial cell nuclei. These results suggest similarities and differences in the laminar distributions of the pathogenic changes in vCJD compared with cases of sporadic CJD (sCJD). The laminar distribution of vacuoles was more extensive in vCJD than in sCJD whereas the distribution of the glial cell nuclei was similar in the two disorders. In addition, PrP deposits in sCJD were localised mainly in the lower cortical laminae while in vCJD, PrP deposits were either present in all laminae or restricted to the upper cortical laminae. These patterns of laminar distribution suggest that the process of cortical degeneration may be distinctly different in vCJD compared with sCJD.
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in areas of the cerebral cortex in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The vacuoles were evenly distributed along the cortex in 40/106 (38%) areas studied and randomly distributed in 6/106 (5.6%) areas. In 22/106 (21%) areas, the vacuoles were aggregated into clusters, 50 - 1600 μm in diameter and which were distributed in a regular pattern parallel to the pia mater. In 38/106 (36%) areas, large clusters of vacuoles, at least 1600 μm in diameter, were present. No significant differences in spatial patterns were observed between the different cortical regions or between the upper and lower laminae. In addition, age at onset and duration of the disease had no significant affect on spatial patterns. The spatial distribution of the vacuolation contrasts with that reported in sporadic CJD (sCJD) suggesting a different pattern of cortical degeneration in vCJD.
Resumo:
In Alzheimer's disease (AD) brain, beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) are not randomly distributed but exhibit a spatial pattern, i.e., a departure from randomness towards regularity or clustering. Studies of the spatial pattern of a lesion may contribute to an understanding of its pathogenesis and therefore, of AD itself. This article describes the statistical methods most commonly used to detect the spatial patterns of brain lesions and the types of spatial patterns exhibited by ß-amyloid deposits and NFT in the cerebral cortex in AD. These studies suggest that within the cerebral cortex, Abeta deposits and NFT exhibit a similar spatial pattern, i.e., an aggregation of individual lesions into clusters which are regularly distributed parallel to the pia mater. The location, size and distribution of these clusters supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortical pathways results in the formation of clusters of NFT and Abeta deposits. In addition, a model to explain the development of the pathology within the cerebral cortex is proposed.
Resumo:
We wish to acknowledge the support of the Brazilian agencies: CNPq, CAPES, and FAPESP (2015/07311-7 and 2011/19296-1).
Resumo:
The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.
Resumo:
The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.
Resumo:
The Australian Alfred Walter Campbell (1868-1937) is remembered as one of the two chief pioneers of the study of the cytoarchitectonics of the primate cerebral cortex. He had worked in Britain carrying out neuroanatomical and neuropathological research for almost two decades before his famous monograph on Histological Studies on the Localisation of Cerebral Function appeared in 1905. In that year he returned to his native Australia and practiced for over 30 years in Sydney as a neurologist rather than a neuropathologist, publishing mainly clinical material though he was involved in the investigation of the epidemic of Australian X disease, a viral encephalitis. His abrupt change in both the nature and the location of his career at a time when he was well established in Britain appears to have been a consequence of his marriage and the need to provide for a family. His simultaneous apparent abandonment of research seems not to have really been the case. As judged from the contents of a paper presented to a local medical congress in Sydney in 1911, it appears that, in Australia, Campbell did carry out a major comparative anatomical and histological investigation of the possibility of localization of function in the cerebellar cortex. He never published this work in detail. His investigation let him to conclude that no such localization of function existed, a view contrary to the then topical interpretation of Bolk (1906), but one in accordance with Gordon Holmes' views a decade later. Campbell's circumstances in Sydney, his extremely reticent nature and the essentially negative outcome of his investigation probably explain his failure to make his study more widely known.
Resumo:
Marked phenotypic variation has been reported in pyramidal cells in the primate cerebral cortex. These extent and systematic nature of these specializations suggest that they are important for specialized aspects of cortical processing. However, it remains unknown as to whether regional variations in the pyramidal cell phenotype are unique to primates or if they are widespread amongst mammalian species. In the present study we determined the receptive fields of neurons in striate and extrastriate visual cortex, and quantified pyramidal cell structure in these cortical regions, in the diurnal, large-brained, South American rodent Dasyprocta primnolopha. We found evidence for a first, second and third visual area (V1, V2 and V3, respectively) forming a lateral progression from the occipital pole to the temporal pole. Pyramidal cell structure became increasingly more complex through these areas, suggesting that regional specialization in pyramidal cell phenotype is not restricted to primates. However, cells in V1, V2 and V3 of the agouti were considerably more spinous than their counterparts in primates, suggesting different evolutionary and developmental influences may act on cortical microcircuitry in rodents and primates. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.