974 resultados para Primary seed dispersal
Resumo:
Pond apple invades riparian and coastal environments with water acting as the main vector for dispersal. As seeds float and can reach the ocean, a seed tracking model driven by near surface ocean currents was used to develop maps of potential seed dispersal. Seeds were ‘released’ in the model from sites near the mouths of major North Queensland rivers. Most seeds reach land within three months of release, settling predominately on windward-facing locations. During calm and monsoonal conditions, seeds were generally swept in a southerly direction, however movement turns northward during south easterly trade winds. Seeds released in February from the Johnstone River were capable of being moved anywhere from 100 km north to 150 km south depending on prevailing conditions. Although wind driven currents are the primary mechanism influencing seed dispersal, tidal currents, the East Australian Current, and other factors such as coastline orientation, release location and time also play an important role in determining dispersal patterns. In extreme events such as tropical cyclone Justin in 1997, north east coast rivers could potentially transport seed over 1300 km to the Torres Strait, Papua New Guinea and beyond.
Resumo:
Fishes probably were the first vertebrate seed dispersers, yet little research has examined this phenomenon. We review evidence of fruit and seed consumption by fishes, and analyze the evolution of frugivory and granivory using South American serrasalmids as a model. Frugivory and granivory are observed among diverse fish taxa worldwide, although most reports are from the Neotropics. Frugivory and granivory among serrasalmids apparently are derived from omnivory, with powerful jaws and specialized dentition appearing as major adaptations. No particular fruit traits seem to be associated with seed dispersal by fishes (ichthyochory). Recent experimental evidence of ichthyochory suggests that fishes can influence riparian vegetation dynamics. Because of deleterious human impacts on aquatic ecosystems worldwide, many critical interactions between plants and fishes have been disrupted before they could be studied. Exotic frugivorous fishes have recently become established on foreign continents, with unknown ecological consequences.
Resumo:
About 45 palm species occur in the Atlantic forest of Brazil, and most of them are affected by loss of seed dispersers resulting from forest fragmentation and hunting. Here we report the effects of habitat loss and defaunation on the seed dispersal system of an endemic palm, Astrocaryum aculeatissimum. We evaluated seed removal, insect and rodent seed predation, and scatter-hoarding in nine sites, ranging from 19 ha to 79 000 ha. We report the seedling, juvenile and adult palm densities in this range of sites. Endocarps remaining beneath the parent palm had a higher probability of being preyed upon by insects in small, mostly fragmented and more defaunated sites. The frequency of successful seed removal, scatter-hoarding and consumption by rodents increased in the larger, less defaunated sites. Successful removal and dispersal collapsed in small (< 1000 ha), highly defaunated sites and frequently resulted in low densities of both seedlings and juveniles. Our results indicate that a large fraction of Atlantic forest palms that rely on scatter-hoarding rodents may become regionally extinct due to forest fragmentation and defaunation. Current management practices including palm extraction and hunting pressure have a lasting effect on Atlantic forest palm regeneration by severely limiting successful recruitment of prereproductive individuals.(c) 2006 the Linnean Society of London.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height >= 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 +/- 106 m in terra firme and 175 +/- 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 +/- 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 +/- 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.
Resumo:
Natural regeneration faces increasing difficulties in dry forests from the Mediterranean basin, including for normally well-regenerating species such as maritime pine (Pinus pinaster Aiton). In this paper, we studied female fertility, seed dispersal and spread rates in P. pinaster from the Spanish Northern Plateau, where natural regeneration failure is a main concern for forest managers. For this purpose we periodically collected data from seed traps and trees located at two core locations across several years. We found significant variation in interannual cone production, with the best seed trees being the same across years. In addition, we found highly skewed distributions of female reproductive effort and large fertility differences across stands located few kilometres away. Annual seed dispersal kernels fitted lognormal or 2Dt models depending on the stand analysed, with median dispersal distances between 14 and 25 m. Kernels fitted for maximum dispersal periods showed an outstanding intraseasonal variation of median dispersal distances, from 10 to 54 m, in association to variable patterns of rainfall and maximum wind speed. The amount of seed produced appeared to be enough to guarantee the natural regeneration of the stands during the typical 20-year regeneration period. Colonisation simulations concluded that Mediterranean maritime pine has a notable dispersion capacity, which is strongly influenced by levels of fecundity and, especially, by the number and frequency of long-distance dispersal events. The latter play a key role in tree dispersion processes through enlarging the occupied area and fostering the invasion of abandoned crop land.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
In subtropical Australia, many native and invasive plant species rely on a shared suite of frugivores, largely birds, for seed dispersal. Many native plants fruit during summer in this region, whereas most invasive plants fruit during winter, thus providing the opportunity for contagious dispersal of seeds beneath synchronously fruiting species. We sampled invasive and native seed rain beneath the canopy of a native summer-fruiting tree Guioa semiglauca and an invasive winter-fruiting tree Cinnamomum camphora, in three study sites over the course of a year. In July, during peak fruiting season for C. camphora and other invasive species, seed rain of invasive species was higher beneath C. camphora than G. semiglauca. This was partly due to the invasive tree Ligustrum lucidum, whose seed rain was three times higher beneath C. camphora than beneath the native tree. In February, seed rain of native species was more abundant beneath the canopy of G. semiglauca than beneath C. camphora, despite the fact that C. camphora was also fruiting at this time. This was probably due to the larger fruit crop produced by G. semiglauca at this time of year. Our study provides evidence that the presence of invasive bird-dispersed plants may facilitate contagious seed dispersal of other invaders, and likewise native species may facilitate seed spread of other native plants.
Resumo:
The quantity of fruit consumed by dispersers is highly variable among individuals within plant populations. The outcome Of Such selection operated by firugivores has been examined mostly with respect to changing spatial contexts. The influence of varying temporal contexts on frugivore choice, and their possible demographic and evolutionary consequences is poorly understood. We examined if temporal variation in fruit availability across a hierarchy of nested temporal levels (interannual, intraseasonal, 120 h, 24 h) altered frugivore choice for a complex seed dispersal system in dry tropical forests of southern India. The interactions between Phyllanthus emblica and its primary disperser (ruminants) was mediated by another frugivore (a primate),which made large quantities of fruit available on the ground to ruminants. The direction and strength of crop size and neighborhood effects on this interaction varied with changing temporal contexts.Fruit availability was higher in the first of the two study years, and at the start of the season in both years. Fruit persistence on trees,determined by primate foraging, was influenced by crop size andconspecific neighborhood densities only in the high fruit availability year. Fruit removal by ruminants was influenced by crop size in both years and neighborhood densities only in the high availability year. In both years, these effects were stronger at the start of the season.Intraseasonal reduction in fruit availability diminished inequalities in fruit removal by ruminants and the influence of crop size and fruiting neighborhoods. All trees were not equally attractive to frugivores in a P. emblica population at all points of time. Temporal asymmetry in frugivore-mediated selection could reduce potential for co-evolution between firugivores and plants by diluting selective pressures. Inter-dependencies; formed between disparate animal consumers can add additional levels of complexity to plant-frugivore mutualistic networks and have potential reproductive consequences for specific individuals within populations.
Resumo:
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.
Resumo:
Logging and hunting are two key direct threats to the survival of wildlife in the tropics, and also disrupt important ecosystem processes. We investigated the impacts of these two factors on the different stages of the seed dispersal cycle, including abundance of plants and their dispersers and dispersal of seeds and recruitment, in a tropical forest in north-east India. We focused on hornbills, which are important seed dispersers in these forests, and their food tree species. We compared abundances of hornbill food tree species in a site with high logging and hunting pressures (heavily disturbed) with a site that had no logging and relatively low levels of hunting (less disturbed) to understand logging impacts on hornbill food tree abundance. We compared hornbill abundances across these two sites. We, then, compared the scatter-dispersed seed arrival of five large-seeded tree species and the recruitment of four of those species. Abundances of hornbill food trees that are preferentially targeted by logging were two times higher in the less disturbed site as compared to the heavily disturbed site while that of hornbills was 22 times higher. The arrival of scatter-dispersed seeds was seven times higher in the less disturbed site. Abundances of recruits of two tree species were significantly higher in the less disturbed site. For another species, abundances of younger recruits were significantly lower while that of older recruits were higher in the heavily disturbed site. Our findings suggest that logging reduces food plant abundance for an important frugivore-seed disperser group, while hunting diminishes disperser abundances, with an associated reduction in seed arrival and altered recruitment of animal-dispersed tree species in the disturbed site. Based on our results, we present a conceptual model depicting the relationships and pathways between vertebrate-dispersed trees, their dispersers, and the impacts of hunting and logging on these pathways.
Resumo:
As populations of the world's largest animal species decline, it is unclear how ecosystems will react to their local extirpation. Due to the unique ecological characteristics of megaherbivores such as elephants, seed dispersal is one ecosystem process that may be affected as populations of large animals are decimated. In typically disturbed South Asian ecosystems, domestic bovids (cattle, Bos primigenius, and buffalo, Bubalus bubalis) may often be the species most available to replace Asian elephants (Elephas maximus) as endozoochorous dispersers of large-fruited mammal-dispersed species. We use feeding trials, germination trials, and movement data from the tropical moist forests of Buxa Tiger Reserve (India) to examine whether domestic bovids are viable replacements for elephants in the dispersal of three largefruited species: Dillenia indica, Artocarpus chaplasha, and Careya arborea. We find that (1) once consumed, seeds are between 2.5 (C. arborea) and 26.5 (D. indica) times more likely to pass undigested into elephant dung than domestic bovid dung; and (2) seeds from elephant dung germinated as well as or better than seeds taken from bovid dung for all plant species, with D. indica seeds from elephant dung 1.5 times more likely to germinate. Furthermore, since wild elephants have less constrained movements than even free-roaming domestic bovids, we calculate that maximum dispersal by elephants is between 9.5 and 11.2 times farther than that of domestic bovids, with about 20% of elephant-dispersed seeds being moved farther than the maximum distance seeds are moved by bovids. Our findings suggest that, while bovids are able to disperse substantial numbers of seeds over moderate distances for two of the three study species, domestic bovids will be unable to routinely emulate the reliable, long-distance dispersal of seeds executed by elephants in this tropical moist forest. Thus while domestic bovids can attenuate the effects of losing elephants as dispersers, they may not be able to prevent the decline of various mammal-dispersed fruiting species in the face of overhunting, habitat fragmentation, and climate change.
Resumo:
Genetic analysis on populations of European ash (Fraxinus excelsior) throughout Ireland was carried out to determine the levels and patterns of genetic diversity in naturally seeded trees in ash woodlands and hedgerows, with the aim of informing conservation and replanting strategies in the face of potential loss of trees as a result of ash dieback. Samples from 33 sites across Northern Ireland and three sites in the Republic of Ireland were genotyped for eight nuclear and ten chloroplast microsatellites. Levels of diversity were high (mean A R = 10.53; mean H O = 0.709; mean H E = 0.765) and were similar to those in Great Britain and continental Europe, whilst levels of population genetic differentiation based on nuclear microsatellites were extremely low (Φ ST = 0.0131). Levels of inbreeding (mean F IS = 0.067) were significantly lower than those reported for populations from Great Britain. Fine-scale analysis of seed dispersal indicated potential for dispersal over hundreds of metres. Our results suggest that ash woodlands across Ireland could be treated as a single management unit, and thus native material from anywhere in Ireland could be used as a source for replanting. In addition, high potential for dispersal has implications for recolonization processes post-ash dieback (Chalara fraxinea) infection, and could aid in our assessment of the capacity of ash to shift its range in response to global climate change.
Resumo:
Salvage logging is a common practice carried out in burned forests worldwide, and intended to mitigate the economic losses caused by wildfires. Logging implies an additional disturbance occurring shortly after fire, although its ecological effects can be somewhat mitigated by leaving wood debris on site. The composition of the bird community and its capacity to provide ecosystem services such as seed dispersal of fleshy-fruited plants have been shown to be affected by postfire logging. We assessed the effects of the habitat structure resulting from different postfire management practices on the bird community, in three burned pine forests in Catalonia (western Mediterranean). For this purpose, we focused on the group of species that is responsible for seed dispersal, a process which takes place primarily during the winter in the Mediterranean basin. In addition, we assessed microhabitat selection by seed disperser birds in such environments in relation to management practices. Our results showed a significant, positive relationship between the density of wood debris piles and the abundance of seed disperser birds. Furthermore, such piles were the preferred microhabitat of these species. This reveals an important effect of forest management on seed disperser birds, which is likely to affect the dynamics of bird-dependent seed dispersal. Thus, building wood debris piles can be a useful practice for the conservation of both the species and their ecosystem services, while also being compatible with timber harvesting
Resumo:
According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata`s digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.