924 resultados para Preparation of ligands
Resumo:
Nanoplate LiFePO4 is synthesized by a polyol route starting from only two reactants, namely, FePO4 and LiOH. The crystalline compound forms by refluxing a tetraethylene glycol solution consisting of FePO4 and LiOH at 335 degrees C without further heating of the reaction product.The nanoplates have average dimensions of 30 nm width and 160 nm length, as measured from transmission electron microscopy micrographs.The surface area of the LiFePO4 sample is 38 m(2) g(-1). Also, the sample is porous with a broadly distributed pore around 50 nm. The electrodes fabricated out of the nanoplate of LiFePO4 exhibit a high electrochemical activity. Discharge capacity values measured are 160 and 100 mAh g(-1) at 0.15C and 3.45C, respectively. A stable capacity of about 155 mAh g(-1) is measured at 0.2C over a 50 charge-discharge cycle. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425730] All rights reserved.
Resumo:
Ammonium and alkali metal tetrafluoroborates have been prepared by the cation exchange reaction of pyridinium tetrafluoroborate with the corresponding hydroxides/halides. The reaction of pyridinium tetrafluoroborate with primary, secondary and tertiary alkyl amines at room temperature gives rise to mono-, di- and tri-alkylammonium tetrafluoroborates, respectively. The yields are good and the samples are of high purity. The products have been characterised by elemental analysis, IR and PMR spectroscopy. The spectral data for most of the compounds are reported for the first time.
Resumo:
Silver salts of hexafluorophosphates, tetrafluoro-borates and hexafluorosilicates have been prepared by a metathetic reaction between the respective ammonium salts and silver nitrate in acetonitrile medium. This one step procedure at room temperature offers salts of high purity in good yields. The salts (AgpF6, AgBF4 and Ag2SiF6) have been characterised by IR spectral data analysis and chemical analysis.
Resumo:
A simple and efficient two-step hybrid electrochemical-thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm(2). The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 A degrees C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV-Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22-75 nm based on Debye-Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30-40 nm. The blue shift was noticed in UV-Vis absorption spectra, the band gaps were found to be 5.40-5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.
Resumo:
It has been observed that a suspension of sodium fluoride in boiling acetonitrile could be used for the preparation of fluorine compounds such as silicon tetrafluoride [1], thiophosphoryl fluoride [2], sulphur tetrafluoride [3,4], and fluorocyclophosphazenes [5]. This method, when adopted for the fluorination of sulphuryl chloride [6], it is observed that a mixture of sulphuryl fluoride and sulphuryl chloro fluoride is obtained. On the other hand, when lead fluoride is substituted for sodium fluoride, pure sulphuryl chloro fluoride is evolved. Based on this observation, a new method has been standardised for the preparation of a pure sample of sulphuryl chlorofluoride by fluorinating sulphuryl chloride by lead fluoride in acetonitrile medium.
Resumo:
The method for the purification of goat serum retinol-binding protein consists of DEAE-cellulose chromatography of the serum followed by preparative polyacrylamide disc gel electrophoresis. After electrophoresis, the retinol-binding protein containing zone is identified by the specific fluorescence of retinol. For raising the antibodies, the portion of the gel containing retinol binding protein is homogenized and injected intradermally and intramuscularly to rabbits. The availability of this simple method for the isolation of retinol-binding protein and production of its antibodies enables the development of a radioimmunoassay for this protein.
Resumo:
The effect of scarification, ploughing and cross-directional plouhing on temperature conditions in the soil and adjacent air layer have been studied during 11 consecutive growth periods by using an unprepared clear-cut area as a control site. The maximum and minimum temperatures were measured daily in the summer months, and other temperature observations were made at four-hour intervals by means of a Grant measuring instrument. The development of the seedling stand was also followed in order to determine its shading effect on the soil surface. Soil preparation decreased the daily temperature amplitude of the air at the height of 10 cm. The maximum temperatures on sunny days were lower in the tilts of the ploughed and in the humps of the cross-directional ploughed sites compared with the unprepared area. Correspondingly, the night temperatures were higher and so the soil preparation considerably reduced the risk of night frost. In the soil at the depth of 5 cm, soil preparation increased daytime temperatures and reduced night temperatures compared with unprepared area. The maximum increase in monthly mean temperatures was almost 5 °C, and the daily variation in the surface parts of the tilts and humps increased so that excessively high temperatures for the optimal growth of the root system were measured from time to time. The temperature also rose at the depths of 50 and 100 cm. Soil preparation also increased the cumulative temperature sum. The highest sums accumulated during the summer months were recorded at the depth of 5 cm in the humps of cross-directional ploughed area (1127 dd.) and in the tilts of the ploughed area (1106 dd.), while the corresponding figure in the unprepared soil was 718 dd. At the height of 10 cm the highest temperature sum was 1020 dd. in the hump, the corresponding figure in the unprepared area being 925 dd. The incidence of high temperature amplitudes and percentage of high temperatures at the depth of 5 cm decreased most rapidly in the humps of cross-directional ploughed area and in the ploughing tilts towards the end of the measurement period. The decrease was attributed principally to the compressing of tilts, the ground vegetation succession and the growth of seedlings. The mean summer temperature in the unprepared area was lower than in the prepared area and the difference did not diminish during the period studied. The increase in temperature brought about by soil preparation thus lasts at least more than 10 years.
Resumo:
A pure sample of nitrosyl chloride has been prepared either by reaction of phosphorus trichloride with concentrated nitric acid or by reaction of phosphorus trichloride with sodium nitrate in presence of water. The nitrosyl chloride gas has been characterized by i.r. spectral data and elemental analysis.
Resumo:
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.