401 resultados para Predicate Transformers
Resumo:
"A publication of the Technology Press, Massachusetts Institute of Technology."
Resumo:
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.
Resumo:
The task of approximation-forecasting for a function, represented by empirical data was investigated. Certain class of the functions as forecasting tools: so called RFT-transformers, – was proposed. Least Square Method and superposition are the principal composing means for the function generating. Besides, the special classes of beam dynamics with delay were introduced and investigated to get classical results regarding gradients. These results were applied to optimize the RFT-transformers. The effectiveness of the forecast was demonstrated on the empirical data from the Forex market.
Resumo:
An effective mathematical method of new knowledge obtaining on the structure of complex objects with required properties is developed. The method comprehensively takes into account information on the properties and relations of primary objects, composing the complex objects. It is based on measurement of distances between the predicate groups with some interpretation of them. The optimal measure for measurement of these distances with the maximal discernibleness of different groups of predicates is constructed. The method is tested on solution of the problem of obtaining of new compound with electro-optical properties.
Resumo:
This paper reports potential benefits around dynamic thermal rating prediction of primary transformers within Western Power Distribution (WPD) managed Project FALCON (Flexible Approaches to Low Carbon Optimised Networks). Details of the thermal modelling, parameter optimisation and results validation are presented with asset and environmental data (measured and day/week-ahead forecast) which are used for determining dynamic ampacity. Detailed analysis of ratings and benefits and confidence in ability to accurately predict dynamic ratings are presented. Investigating the effect of sustained ONAN rating compared to a dynamic rating shows that there is scope to increase sustained ratings under ONAN operating conditions by up to 10% higher between December and March with a high degree of confidence. However, under high ambient temperature conditions this dynamic rating may also reduce in the summer months.
Resumo:
The purpose of this research was to apply model checking by using a symbolic model checker on Predicate Transition Nets (PrT Nets). A PrT Net is a formal model of information flow which allows system properties to be modeled and analyzed. The aim of this thesis was to use the modeling and analysis power of PrT nets to provide a mechanism for the system model to be verified. Symbolic Model Verifier (SMV) was the model checker chosen in this thesis, and in order to verify the PrT net model of a system, it was translated to SMV input language. A software tool was implemented which translates the PrT Net into SMV language, hence enabling the process of model checking. The system includes two parts: the PrT net editor where the representation of a system can be edited, and the translator which converts the PrT net into an SMV program.
Resumo:
In recent years, energy modernization has focused on smart engineering advancements. This entails designing complicated software and hardware for variable-voltage digital substations. A digital substation consists of electrical and auxiliary devices, control and monitoring devices, computers, and control software. Intelligent measurement systems use digital instrument transformers and IEC 61850-compliant information exchange protocols in digital substations. Digital instrument transformers used for real-time high-voltage measurements should combine advanced digital, measuring, information, and communication technologies. Digital instrument transformers should be cheap, small, light, and fire- and explosion-safe. These smaller and lighter transformers allow long-distance transmission of an optical signal that gauges direct or alternating current. Cost-prohibitive optical converters are a problem. To improve the tool's accuracy, amorphous alloys are used in the magnetic circuits and compensating feedback. Large-scale voltage converters can be made cheaper by using resistive, capacitive, or hybrid voltage dividers. In known electronic voltage transformers, the voltage divider output is generally on the low-voltage side, facilitating power supply organization. Combining current and voltage transformers reduces equipment size, installation, and maintenance costs. These two gadgets cost less together than individually. To increase commercial power metering accuracy, current and voltage converters should be included into digital instrument transformers so that simultaneous analogue-to-digital samples are obtained. Multichannel ADC microcircuits with synchronous conversion start allow natural parallel sample drawing. Digital instrument transformers are created adaptable to substation operating circumstances and environmental variables, especially ambient temperature. An embedded microprocessor auto-diagnoses and auto-calibrates the proposed digital instrument transformer.
Resumo:
Fe(100-x)Ti(x) alloys (x = 10, 15, 20) were studied with respect to their microstructure and magnetostriction. Depending on heat treatment temperature and composition, the sample retained either the alpha-phase (A2 structure) or the alpha-phase plus the TiFe(2) Laves phase (C14 structure). The saturation magnetostriction measured at 238K is negative, about -11 ppm. However, for fields up to 0.4 T the magnetostriction is barely zero, a very interesting result. High values of magnetostriction are of interest for applications mainly in sensors and actuators, but zero magnetostriction is also a remarkable property, desirable for many applications such as electric transformers and fluxgate sensor cores. Therefore, the Fe(100-x)Ti(x) (x < 20 at%) are an attractive option to be considered for these applications.
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
This research presents the development and implementation in a computational routine of algorithms for fault location in multiterminal transmission lines. These algorithms are part of a fault-location system, which is capable of correctly identifying the fault point based on voltage and current phasor quantities, calculated by using measurements of voltage and current signals from intelligent electronic devices, located on the transmission-line terminals. The algorithms have access to the electrical parameters of the transmission lines and to information about the transformers loading and their connection type. This paper also presents the development of phase component models for the power system elements used by the fault-location algorithms.
Resumo:
An efficient expert system for the power transformer condition assessment is presented in this paper. Through the application of Duval`s triangle and the method of the gas ratios a first assessment of the transformer condition is obtained in the form of a dissolved gas analysis (DGA) diagnosis according IEC 60599. As a second step, a knowledge mining procedure is performed, by conducting surveys whose results are fed into a first Type-2 Fuzzy Logic System (T2-FLS), in order to initially evaluate the condition of the equipment taking only the results of dissolved gas analysis into account. The output of this first T2-FLS is used as the input of a second T2-FLS, which additionally weighs up the condition of the paper-oil system. The output of this last T2-FLS is given in terms of words easily understandable by the maintenance personnel. The proposed assessing methodology has been validated for several cases of transformers in service. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Thyristor-based onload tap-changing ac voltage stabilizers are cheap and robust. They have replaced most mechanical tap-changers in low voltage applications from 300 VA to 300 M. Nevertheless, this replacement hardily applies to tap-changers associated to transformers feeding medium-voltage lines (typically 69 kV primary, 34.5 kV line, 10 MVA) which need periodical maintenance of contacts and oil. The Electric Power Research Institute (EPRI) has studied the feasibility of this replacement. It detected economical problems derived from the need for series association of thyristors to manage the high voltages involved, and from the current overload developed under line fault. The paper reviews the configurations used in that field and proposes new solutions, using a compensating transformer in the main circuit and multi-winding coils in the commutating circuit, with reduced overload effect and no series association of thyristors, drastically decreasing their number and rating. The stabilizer can be installed at any point of the line and the electronic circuit can be fixed to ground. Subsequent works study and synthesize several commutating circuits in detail.
Resumo:
A novel methodology to assess the risk of power transformer failures caused by external faults, such as short-circuit, taking the paper insulation condition into account, is presented. The risk index is obtained by contrasting the insulation paper condition with the probability that the transformer withstands the short-circuit current flowing along the winding during an external fault. In order to assess the risk, this probability and the value of the degree of polymerization of the insulating paper are regarded as inputs of a type-2 fuzzy logic system (T2-FLS), which computes the fuzzy risk level. A Monte Carlo simulation has been used to find the survival function of the currents flowing through the transformer winding during a single-phase or a three-phase short-circuit. The Roy Billinton Test System and a real power system have been used to test the results. (C) 2008 Elsevier B.V. All rights reserved.