986 resultados para Precise Point Positioning
Resumo:
In order to increase the accuracy of patient positioning for complex radiotherapy treatments various 3D imaging techniques have been developed. MegaVoltage Cone Beam CT (MVCBCT) can utilise existing hardware to implement a 3D imaging modality to aid patient positioning. MVCBCT has been investigated using an unmodified Elekta Precise linac and 15 iView amorphous silicon electronic portal imaging device (EPID). Two methods of delivery and acquisition have been investigated for imaging an anthropomorphic head phantom and quality assurance phantom. Phantom projections were successfully acquired and CT datasets reconstructed using both acquisition methods. Bone, tissue and air were 20 clearly resolvable in both phantoms even with low dose (22 MU) scans. The feasibility of MegaVoltage Cone beam CT was investigated using a standard linac, amorphous silicon EPID and a combination of a free open source reconstruction toolkit as well as custom in-house software written in Matlab. The resultant image quality has 25 been assessed and presented. Although bone, tissue and air were resolvable 2 in all scans, artifacts are present and scan doses are increased when compared with standard portal imaging. The feasibility of MVCBCT with unmodified Elekta Precise linac and EPID has been considered as well as the identification of possible areas for future development in artifact correction techniques to 30 further improve image quality.
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
In this paper, we consider the problem of position regulation of a class of underactuated rigid-body vehicles that operate within a gravitational field and have fully-actuated attitude. The control objective is to regulate the vehicle position to a manifold of dimension equal to the underactuation degree. We address the problem using Port-Hamiltonian theory, and reduce the associated matching PDEs to a set of algebraic equations using a kinematic identity. The resulting method for control design is constructive. The point within the manifold to which the position is regulated is determined by the action of the potential field and the geometry of the manifold. We illustrate the performance of the controller for an unmanned aerial vehicle with underactuation degree two-a quadrotor helicopter.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
Objective: The positioning and meaning of palliative care within the healthcare system lacks clarity which adds a level of complexity to the process of transition to palliative care. This study explores the transition to the palliative care process in the acute care context of metastatic melanoma. Method: A theoretical framework drawing on interpretive and critical traditions informs this research. The pragmatism of symbolic interactionism and the critical theory of Habermas brought a broad orientation to the research. Integration of the theoretical framework and grounded-theory methods facilitated data generation and analysis of 29 interviews with patients, family carers, and healthcare professionals. Results: The key analytical findings depict a scope of palliative care that was uncertain for users of the system and for those working within the system. Becoming “palliative” is not a defined event; nor is there unanimity around referral to a palliative care service. As such, ambiguity and tension contribute to the difficulties involved in negotiating the transition to palliative care. Significance of Results: Our findings point to uncertainty around the scopes of practice in the transition to palliative care. The challenge in the transition process lies in achieving greater coherency of care within an increasingly specialized healthcare system. The findings may not only inform those within a metastatic melanoma context but may contribute more broadly to palliative practices within the acute care setting.
Resumo:
A simple volume dilatometer is described for the precise measurements of volume changes as a function of temperature in liquid mixtures. The expansivity of (cyclohexane + acetic anhydride) in the critical region was measured. The critical solution temperature Tc was approached to within 9 mK. For T > (Tc + 0.3 K), the results results follow both a logarithmic and a power-law behaviour with an exponent ≈ 1/8. But for T < (Tc + 0.3 K), the results seem to be affected possibly by gravity or temperature gradients. In this region, the expected expansivity anomaly is rounded off to a cusp. The expansivity shows a reduced anomaly for off-critical compositions. A discussion of the local extremum and a correlation between negative expansivity and the resistivity anomaly are also given.
Resumo:
Few published studies have monitored destination brand image over time. This temporal aspect is an important gap in the literature, given consensus around the role perceptions play in consumers’ decision making, and the ensuing emphasis on imagery in destination branding collateral. Whereas most destination image studies have been a snapshot of perceptions at one point in time, this paper presents findings from a survey implemented four times between 2003 and 2015. Brand image is the core construct in modelling destination branding performance, which has emerged as a relatively new field of research in the past decade. Using the consumer-based brand equity (CBBE) hierarchy, the project has benchmarked and monitored destination brand salience, image and resonance for an emerging regional destination, relative to key competitors, in the domestic Australian market; and the survey instrument has been demonstrated to be reliable in the context of short break holidays by car. What is particularly interesting to date is there has been relatively little change in the market positions of the five destinations, in spite of over a decade of marketing communications by the regional tourism organisations and their stakeholders, and more recently the mass of user-generated travel content on social media. The project didn’t analyse the actual marketing communications for each of the DMOs. Therefore an important implication is that irrespective of the level of marketing undertaken the DMOs seem to have had little control over the perceptions held in their largest market during this time period. Therefore it must be recognised any improvement in perceptions will likely take a long period of time, and so branding needs to be underpinned by a philosophy of a long term financial investment as well as commitment to a consistency of message over time; which given the politics of DMO decision making represents a considerable challenge.
Resumo:
The electrical capacitance and resistance of the binary liquid mixture cyclohexane + acetonitrile are measured in the one phase and two phase regions at spot frequencies between 5 kHz and 100 kHz. This sample has a very low gravity affected (∼0.6 mK) region. In one phase region the capacitance data show a sharp, ∼0.7% increase above background within 0.5 degrees of Tc whereas the resistance has a smooth increase of ∼1.5% above background in a (T−Tc) range of 4 degrees. Two phase values of capacitance and resistance from the coexisting phases are used to determine the critical parameters Tc (critical temperature), Rc (resistance at Tc) and Cc (capacitance at Tc). A precise knowledge of these parameters reduces the uncertainty on the critical exponent 0 for C and R. The one phase capacitance data fit to an (1 - α) exponent in a limited temperature range of 0.2 degrees. Resistance data strongly support an (1 - α) exponent over the entire 5 degree range.
Resumo:
This study deals with how ethnic minorities and immigrants are portrayed in the Finnish print media. The study also asks how media users of various ethnocultural backgrounds make sense of these mediated stories. A more general objective is to elucidate negotiations of belonging and positioning practices in an increasingly complex society. The empirical part of the study is based on content analysis and qualitative close reading of 1,782 articles in five newspapers (Hufvudstadsbladet, Vasabladet, Helsingin Sanomat, Iltalehti and Ilta-Sanomat) during various research periods between 1999 and 2007. Four case studies on print media content are followed up by a focus group study involving 33 newspaper readers of Bosnian, Somalian, Russian, and 'native' Finnish backgrounds. The study draws from different academic and intellectual traditions; mainly media and communication studies, sociology and social psychology. The main theoretical framework employed is positioning theory, as developed by Rom Harré and others. Building on this perspective, situational self-positioning, positioning by others, and media positioning are seen as central practices in the negotiation of belonging. In support of contemporary developments in social sciences, some of these negotiations are seen as occurring in a network type of communicative space. In this space, the media form one of the most powerful institutions in constructing, distributing and legitimising values and ideas of who belongs to 'us', and who does not. The notion of positioning always involves an exclusionary potential. This thesis joins scholars who assert that in order to understand inclusionary and exclusionary mechanisms, the theoretical starting point must be a recognition of a decent and non-humiliating society. When key insights are distilled from the five empirical cases and related to the main theories, one of the major arguments put forward is that the media were first and foremost concerned with a minority actor's rightful or unlawful belonging to the Finnish welfare system. However, in some cases persistent stereotypes concerning some immigrant groups' motivation to work, pay taxes and therefore contribute are so strong that a general idea of individualism is forgotten in favour of racialised and stagnated views. Discussants of immigrant background also claim that the positions provided for minority actors in the media are not easy to identify with; categories are too narrow, journalists are biased, the reporting is simplifying and carries labelling potential. Hence, although the will for the communicative space to be more diverse and inclusive exists — and has also in many cases been articulated in charters, acts and codes — the positioning of ethnic minorities and immigrants differs significantly from the ideal.
Resumo:
The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.
Resumo:
This work evaluates the effect of wavelength positioning errors in spectral scans on analytical results when the Kalman filtering technique is used for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a positioning accuracy of 0.1 pm is required in order to obtain accurate and precise estimates for analyte concentrations. The positioning error in sample scans is more crucial than that in model scans. The relative bias in measured analyte concentration originating from a positioning error in a sample scan increases linearly with an increase in the magnitude of the error and the peak distance of the overlapping lines, but is inversely proportional to the signal-to-background ratio. By the use of an optimization procedure for the positions of scans with the innovations number as the criterion, the wavelength positioning error can be reduced and, correspondingly, the accuracy and precision of analytical results improved.
Resumo:
Plakhov, A.Y., (2004) 'Precise solutions of the one-dimensional Monge-Kantorovich problem', Sbornik: Mathematics 195(9) pp.1291-1307 RAE2008
Resumo:
Oculographical research of people watching a human face indicates than beholder's eyes stop most often and for the longest period of time on the eyes and the mouth of the face looked at and that they move among these three points most frequently. The position of the eyes and mouth in relation to one another can be described with a single number being a measure of an angle with the vertex in the middle of the mouth and with arms crossing the centers of the eye pupils. The angles were measured from photographs of people from all over the world, as well as of residents of Lublin. Subsequently, the subjects from Lublin were asked to make face schemas by positioning the eyes and the mouth in the way they considered most attractive. The eye-mouth-eye angle of these schemas was measured. Additionally, measurements of the same angle were taken from the faces depicted in icons. The schemas of the most attractive - according to the subjects - faces were characterized by angles approximating the mean angle from the photographs, and significantly greater than the mean angle from the icons.
Resumo:
Significant recent progress has shown ear recognition to be a viable biometric. Good recognition rates have been demonstrated under controlled conditions, using manual registration or with specialised equipment. This paper describes a new technique which improves the robustness of ear registration and recognition, addressing issues of pose variation, background clutter and occlusion. By treating the ear as a planar surface and creating a homography transform using SIFT feature matches, ears can be registered accurately. The feature matches reduce the gallery size and enable a precise ranking using a simple 2D distance algorithm. When applied to the XM2VTS database it gives results comparable to PCA with manual registration. Further analysis on more challenging datasets demonstrates the technique to be robust to background clutter, viewing angles up to +/- 13 degrees and with over 20% occlusion.