999 resultados para Precipitation (Meteorology) -- Catalonia -- Begur


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RegCM3 (Regional Climate Model-version 3) was nested in HadAM3 model to simulate present (1975-1989, referred hereafter as RegHad) and two future climate scenarios (A2 and B2 from 2071 to 2085, referred as RegA2 and RegB2) over the South America (SA) and South Atlantic Ocean (SAO). Projected changes in the air temperature, precipitation, low level circulation and cyclogenesis climatology were investigated. The cyclogenesis were identified using an automatic scheme for tracking based on the minimum of relative vorticity (zeta) from 10-m height wind. During summer, a general decrease (increase) in the precipitation is projected by RegA2 and RegB2 over the northeastern SA (center-west and south Brazil, north Argentina and Uruguay). For winter, an anomalous low level anticyclonic circulation is associated with the reduction in the rainfall over the central part of southern Brazil in RegA2 and RegB2 scenarios. Similar to HadAM3, RegCM3 projects larger warming in A2 scenario. For the present climate, when compared to HadAM3, RegHad defines better both the location of the main cyclogenetic areas and its annual cycle near southwestern SAO. The projections indicate a reduction in the total number of cyclones of -7.2% and -4.7% for RegA2 and RegB2, respectively, while HadAM3 reduction is -4.5% for both scenarios. The decrease is larger for initially intense cyclones (zeta <=-<= 2.5 x 10(-5) s-(1)): -20.9% (RegA2) and -11.3% (RegB2). For the lifetime, distance traveled and mean velocity of the cyclones, the A2 and B2 scenarios present mean values close to the present climate ( 3 days, 1900 km, and 9 m s(-1), respectively). Regarding the initial mean vorticity of the systems, RegB2 simulates values similar to the present climate, but they are initially weaker in RegA2. In general, RegA2 and RegB2 show a large decrease in the number of cyclones over the southern SAO due to an anticyclonic anomaly covering SAO between 30-55A degrees S. The reduction is larger in the scenario with higher concentrations of greenhouse gases (RegA2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.