991 resultados para Pre-imaginal determination
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
The oxidation of a reactive dye, Cibacron Blue F3GA, CB, (C.I. 61211), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode occurs in two steps at 2.0 < pH < 10 involving one electron transfer each to the amine group leading to the imide derivative. Stable films of poly-L-lysine (PLL) in the presence of glutaraldehyde (GA) 97.5%:2.5% on glassy carbon electrode can be used to detect low levels of dye using its oxidation peak at +0.75V by voltammetry. Linear calibration graphs were obtained for the CB reactive dye, from 1.0 X 10(-6) to 1.0 X 10(-5) mol L-1 in B-R buffer, pH 2.0, using a pre-concentration off-line during 10 min. The detection limit (3 sigma/slope) was calculated to be 4.5 X 10(-8) mol L-1. Films of PLL can readily be applied for the determination of CB dye bearing aminoanthraquinone as chromophore and chlorotriazinyl as reactive group at concentrations at least 100 times lesser than using a glassy carbon electrode without modification. The method described was applied for the determination of CB dye in tap water and raw water collected from the municipal treatment plant with a recovery of 89.2% +/- 5.4 and 88.0% +/- 6.5, respectively. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(Ill) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to online pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 mu g L-1 were obtained for total Sb and Sb (III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 19 and I I I 15% when 120 s of sample loading were used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A rapid and simple method for procaine determination was developed by flow injection analysis (FIA) using a screen-printed carbon electrode (SPCE) as amperometric detector. The present method is based on the amine/hydroxylamine oxidation from procaine monitored at 0.80 V on SPCE in sodium acetate solution pH 6.0. Using the best experimental conditions assigned as: pH 6.0, flow rate of 3.8 mL min(-1), sample volume of 100 mu L and analytical path of 30 cm it is possible to construct a linear calibration curve from 9.0 x 10(-6) to 1.0 x 10(-4) mol L-1. The relative standard deviation for 5.0 x 10(-5) mol L-1 procaine (15 repetitions using the same electrode) is 3.2% and detection limit calculated is 6.0 x 10(-6) mol L-1. Recoveries obtained for procaine gave a mean values from 94.8 to 102.3% and an analytical frequency of 36 injections per hour was achieved. The method was successfully applied for the determination of procaine in pharmaceutical formulation without any pre-treatment, which are in good accordance with the declared values of manufacturer and an official method based on spectrophotometric analysis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A method has been developed for the direct determination of As in sugar by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (end-capped THGA) and longitudinal Zeeman-effect background correction. The thermal behavior of As during the pyrolysis and atomization steps was investigated in sugar solutions containing 0.2% (v/v) HNO3 using Pd, Ni, and a mixture of Pd + Mg as the chemical modifiers. For a 60-muL sugar solution, an aliquot of 8% (m/v) in 0.2% (v/v)HNO3 was dispensed into a pre-heated graphite tube at 70 degreesC. Linear analytical curves were obtained in the 0.25 - 1.50-mug L-1 As range. Using 5 mug Pd and a first pyrolysis step at 600 degreesC assisted by air during 40 s, the formation of a large amount of carbonaceous residue inside the atomizer was avoided. The characteristic mass was calculated as 24 pg As and the lifetime of the graphite tube was around 280 firings. The limit of detection (L.O.D.) based on integrated absorbance was 0.08 mug L-1 (4.8 pg As) and the typical relative standard deviation (n = 12) was 7% for a sugar solution containing 0.5 mug L-1. Recoveries of As added to sugar samples varied from 86 to 98%. The accuracy was checked in the direct analysis of eight sugar samples. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained for acid-digested sugar samples by GFAAS.
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaqa) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(NO3)(2). Pyrolysis and atomization temperature curves were established in a cachaqa medium (1+1; v/v) containing 0.2% (v/v) HNO3 and spiked with 20 mu g L-1 As and Pb and 200 mu g L-1 Cu. The effect of the concentration of major elements usually present in cachaqa matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 mu g L-1 As, 9.2 mu g L-1 Cu, and 0.3 pig L-1 Pb. The found concentrations varied from 0.81 to 4.28 mu g L-1 As, 0.28 to 3.82 mg L-1 Cu and 0.82 to 518 mu g L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 mu g L-1, 0.81 mg L-1, and 38.9 mu g L-1 concentrations.
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
Levodopa (L-dopa), the biological precursor of catecholamines, is the most widely prescribed drug in the treatment of Parkinson's disease. The present work presents a proposal for the application of a gold screen-printed electrode an electrochemical sensor for monitoring L-dopa in stationary solution and a flow system. Using the electrooxidation of L-dopa at +0.63 V in acetate buffer pH 3.0 on a gold screen-printed electrode it is possible to obtain a linear calibration curve from 9.9 x 10(-5) to 1.2 x 10(-3) mol L-1 and a detection limit of 6.8 x 10(-5) mol L-1. Under amperometric conditions (E-app = 0.8 V; flow rate = 14.1 ml, min(-1); pH 3.0), an analytical calibration graph for L-dopa was obtained from 1.0 x 10(-6) mol L-1 6.6 x 10(-4) mol L-1 with a detection limit of 9.9 x 10(-7) mol L-1. The method was successfully applied to the determination of L-dopa in commercial dosage forms without any pre-treatment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Remazol brilliant orange 3R shows only a voltammetric peak for the reduction of the azo group. No peak was observed for the reduction of the sulfatoethylsulfone or vinylsulfone reactive groups. The reduction of a pre-protonated ate group involving a two-electron process, gives a hydrate derivative in acidic solution. In alkaline solution the reduction process occurs at more negative potential with the formation of an unstable hydrate compound which decomposes via HN-NH bond cleavage and loss of a sulfate group. Optimum conditions are given for the cathodic stripping voltammetric determination of dir: dye in aqueous solution. The optimum accumulation potential and time were 0 V and up to 60 s, respectively. Linear calibration graphs were obtained from 30 to 300 ng ml(-1) in pH 4 and 6.2 to 62 ng ml(-1) in pH 10. The limit of determination obtained was 1.5 ng ml(-1) (pH 10). The coefficient of variation was 2.6% (n = 7) at 62 ng ml(-1) of the reactive dye. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
A sensor based on graphite electrode modified with palladium-platinum-palladium film is proposed for phosphite determination by flow-injection amperometry. The modified electrode was prepared by a sequential cathodic deposition of Pd, Pt and Pd on a graphite electrode from 0.5% m/v PdCl2 + 28% m/v NH4OH and 2% m/v H2PtCl6 + 10% v/v H2SO4 solutions. After suitable conditioning, the electrode showed catalytic activity for phosphite oxidation when 0. 15 V was applied. The proposed system handles approximately 50 samples per hour (0.0.1 - 0.05 mol L-1 Na-2 HPO3; R-2 = 0.9997), consuming ca. 70 mu L of sample per determination. The limit of detection and amperometric sensibility were 5 X 10(-4) mol L-1 and 1.5 mA L mol(-1), respectively. The proposed method was applied to analysis of fertilizer samples without pre-treatment. Results are in agreement with those obtained by spectrophotometry and titrimetry at 95% confidence level and good recoveries (96-109%) of spiked samples were found. Relative standard deviation (n=12) of a 0.01 mol L-1 Na2HPO3 sample was 2%. The useful lifetime of modified electrode was around 220 determinations. For routine purposes it means that this electrode can be continuously used for 5 hours.