933 resultados para Power-factor-correction (PFC) capacitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on autoconnections, or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies mitigate many low-order current harmonics in the utility, reducing the THD (total harmonic distortion) and increasing the power factor. This paper presents a mathematical model based on phasor diagrams, that results in a single expression able to unify all differential topologies connections (Delta and Wye), for both step-up or step-down autotransformers, for 12 and 18-pulse AC-DC converters. The proposed family of converters can be designed for any relationship between the input voltage and the load voltage. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18 pulses rectifier with Wye or Delta-differential connection. The design procedure, simple and fast, is developed and tested for a prototype rating 6 kW and 250 V on the DC load © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes and describes a high power factor AC-AC converter for naval applications using Permanent Magnet Generator (PMG). The three-phase output voltages of the PMG vary from 260 Vrms (220 Hz) to 380 Vrms (360 Hz), depending on load conditions. The proposed converter consists of a Y-/ΔY power transformer, which provides electrical isolation between the PMG and remaining stages, and a twelve-pulse uncontrolled rectifier stage directly connected to a single-phase inverter stage, without the use of an intermediary DC-DC topology. This proposal results in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and low total harmonic distortion for the input currents of the converter. The single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120 Vrms, 60 Hz output. The control philosophy, implemented in a digital signal processor (DSP) which also contains protection routines, alows series connections between two identical converters, achieving 240 Vrms, 60 Hz total output voltage. Measured total harmonic distortion for the AC output voltage is lower than 2% and the input power factor is 0.93 at 3.6kW nominal load. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifiers can replace a conventional six pulse three-phase rectifier (diode bridge) providing a DC voltage with low ripple, low Total Harmonic Distortion of current (THDi) and a high Power Factor (PF). In this context is presented a multipulse rectifier with generalized Delta-differential autotransformer topology, which can provide any level of DC output voltage for any level of three-phase AC input voltage. This paper presents all the possible configurations for Delta topology in order to choose, through graphics, one configuration that presents reduced weight and volume. The average voltage on the DC bus must be compatible with the DC voltage in the six pulse rectifier used in commercial ASDs. Therefore, it is possible to apply the retrofit technique to replace the conventional bridge rectifier by the proposed multipulse rectifier. Based on mathematic models and simulation results, an 18-pulse rectifier with Delta topology, 220 V of line voltage, 315 V of DC output, and rating 2.5 kW of power was designed, implemented and applied for three different commercial ASDs. Experimental results as voltage and current waveforms and results about PF and THDi will be presented. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the development of a switched-mode power supply circuit based on a Buck topology converter with a Boost Rectifier One-Cycle Control with Power Factor Correction developing, thus, a source of direct current for a module of 50 power LEDs that will be used in a lamp for public street lightning. It is presented, at first, some aspects about the most common technologies used in lamps of public street lightning in Brazil and a comparison with the White LED high power, which is the one that presents itself as the most promising among the existing market. Then it is presented the detailed development of the static converter switched PWM, consisting of a Boost rectifier with power factor correction and methodology of control One-Cycle Control associated with a Buck converter controlled by a PI method that operates as a direct current source . At the end of the simulation results of the circuit through the PSIM software are presented to verify the design behavior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development and the main results for an interleaved boost rectifier operating as a special input power stage for a trolleybus type vehicle, allowing its feeding by alternate current (AC) or direct current (DC) distribution power systems. When feeding with two wires (single phase) alternate current distribution system, the converter accomplish active power factor correction, providing a relatively sinusoidal current with low total harmonic distortion (THD) and fully complying with IEC 61000-3-4 standards. In addition, a management control system promotes the required automatic operation changes for the proposed rectifier when the vehicle is changing from the DC distribution power system to the AC distribution power system and vice-versa, keeping its original electrical DC system characteristics for the adjustable speed driver sub-system. The main experimental results for a prototype rated at 150kW are presented, considering its application for a trolleybus with DC adjustable speed driver, demonstrating the proposed converter benefits and the possibility of AC feeding system for trolleybus type vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of high efficacy, long lifespan, and environment-friendly operation, LED lighting devices become more and more popular in every part of our life, such as ornament/interior lighting, outdoor lightings and flood lighting. The LED driver is the most critical part of the LED lighting fixture. It heavily affects the purchasing cost, operation cost as well as the light quality. Design a high efficiency, low component cost and flicker-free LED driver is the goal. The conventional single-stage LED driver can achieve low cost and high efficiency. However, it inevitably produces significant twice-line-frequency lighting flicker, which adversely affects our health. The conventional two-stage LED driver can achieve flicker-free LED driving at the expenses of significantly adding component cost, design complexity and low the efficiency. The basic ripple cancellation LED driving method has been proposed in chapter three. It achieves a high efficiency and a low component cost as the single-stage LED driver while also obtaining flicker-free LED driving performance. The basic ripple cancellation LED driver is the foundation of the entire thesis. As the research evolving, another two ripple cancellation LED drivers has been developed to improve different aspects of the basic ripple cancellation LED driver design. The primary side controlled ripple cancellation LED driver has been proposed in chapter four to further reduce cost on the control circuit. It eliminates secondary side compensation circuit and an opto-coupler in design while at the same time maintaining flicker-free LED driving. A potential integrated primary side controller can be designed based on the proposed LED driving method. The energy channeling ripple cancellation LED driver has been proposed in chapter five to further reduce cost on the power stage circuit. In previous two ripple cancellation LED drivers, an additional DC-DC converter is needed to achieve ripple cancellation. A power transistor has been used in the energy channeling ripple cancellation LED driving design to successfully replace a separate DC-DC converter and therefore achieved lower cost. The detailed analysis supports the theory of the proposed ripple cancellation LED drivers. Simulation and experiment have also been included to verify the proposed ripple cancellation LED drivers.