924 resultados para Power electronics converters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel inverters provide an attractive solution for power electronics when both reduced harmonic contents and high voltages are required. In this paper, a novel predictive current control technique is proposed for a three-phase multilevel inverter, which controls the capacitors voltages and load currents with low switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase three-level inverter with a pure inductive load has been implemented to track reference currents using analogue circuits and programmable logic device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new DC-DC Multi-Output Boost (MOB) converter which can share its total output between different series of output voltages for low and high power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady state and dynamic analysis of a MOB converter are examined. A simple control strategy has been proposed to demonstrate the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel converters can achieve an overall effective switch frequency multiplication and consequent ripple reduction through the cancellation of the lowest order switch frequency terms. This paper investigates the harmonic content and the frequency response of these multimodulator converters. It is shown that the transfer function of uniformly sampled modulators is a bessel function associated with the inherent sampling process. Naturally sampled modulators have a flat transfer function, but multiple switchings per switch cycle will occur unless the input is slew-rate limited. Lower sideband harmonics of the effective carrier frequency and, in uniform converters, harmonics of the input signal also limit the useful bandwidth. Observations about the effect of the number of converters, their type (naturally or uniformly sampled), and the ratio of modulating frequency and switch frequency are made

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual practice to study a large power system is through digital computer simulation. However, the impact of large scale use of small distributed generators on a power network cannot be evaluated strictly by simulation since many of these components cannot be accurately modelled. Moreover, the network complexity makes the task of practical testing on a physical network nearly impossible. This study discusses the paradigm of interfacing a real-time simulation of a power system to real-life hardware devices. This type of splitting a network into two parts and running a real-time simulation with a physical system in parallel is usually termed as power-hardware-in-the-loop (PHIL) simulation. The hardware part is driven by a voltage source converter that amplifies the signals of the simulator. In this paper, the effects of suitable control strategy on the performance of PHIL and the associated stability aspects are analysed in detail. The analyses are validated through several experimental tests using an real-time digital simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A power electronics-based buffer is examined in which through control of its PWM converters, the buffer-load combination is driven to operate under either constant power or constant impedance modes. A battery, incorporated within the buffer, provides the energy storage facility to facilitate the necessary power flow control. Real power demand from upstream supply is regulated under fault condition, and the possibility of voltage or network instability is reduced. The proposed buffer is also applied to a wind farm. It is shown that the buffer stabilizes the power contribution from the farm. Based on a battery cost-benefit analysis, a method is developed to determine the optimal level of the power supplied from the wind farm and the corresponding capacity of the battery storage system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A switching control strategy is proposed for single and dual inductor current-fed push-pull converters. The proposed switching control strategy can be used with both current-fed push-pull converters with an active voltage doubler rectifier, or active rectifier, in the secondary side of the isolation transformer. The proposed switching control strategy makes turn-on and turn-off processes of the primary side power switches zero-voltage-switching and zero-current-switching respectively. The soft-switching operation of the single and dual inductor push-pull converters, with both types of active rectifier, is explained. Simulation and experimental results are provided to validate soft switching operation of the current-fed push-pull converters with the proposed switching control strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical wireless power transfer systems utilize series compensation circuit which is based on magnetic coupling and resonance principles that was first developed by Tesla. However, changes in coupling caused by gap distance, alignment and orientation variations can lead to reduce power transfer efficiencies and the transferred power levels. This paper proposes impedance matched circuit to reduce frequency bifurcation effect and improve on the transferred power level, efficiency and total harmonic distortion (THD) performance of the series compensation circuit. A comprehensive mathematical analysis is performed for both series and impedance matched circuits to show the frequency bifurcation effects in terms of input impedance, variations in transferred power levels and efficiencies. Matlab/Simulink results validate the theoretical analysis and shows the circuits’ THD performance when circuits are fed with power electronic converters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes a novel gate drive circuit to improve the switching performance of MOSFET power switches in power electronic converters. The proposed topology exploits the cascode configuration, allowing the minimisation of switching losses in the presence of practical circuit constraints, which enables efficiency and power density improvements. Switching characteristics of the new topology are investigated and key mechanisms that control the switching process are identified. Unique analysis tools and techniques are also developed to demonstrate the application of the cascode gate drive circuit for switching performance optimisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5, unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic free operation is obtained. The results are verified experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutral point clamped (NPC), three level converters with insulated gate bipolar transistor devices are very popular in medium voltage, high power applications. DC bus short circuit protection is usually done, using the sensed voltage across collector and emitter (i.e., V-CE sensing), of all the devices in a leg. This feature is accommodated with the conventional gate drive circuits used in the two level converters. The similar gate drive circuit, when adopted for NPC three level converter protection, leads to false V-CE fault signals for inner devices of the leg. The paper explains the detailed circuit behavior and reasons, which result in the occurrence of such false V-CE fault signals. This paper also illustrates that such a phenomenon shows dependence on the power factor of the supplied three-phase load. Finally, experimental results are presented to support the analysis. It is shown that the problem can be avoided by blocking out the V-CE sense fault signals of the inner devices of the leg.