87 resultados para Positronium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The random-phase approximation with exchange (RPAE) is used with a B-spline basis to compute dynamic dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr, Cd, and Ba). From these, values of the van der Waals C6 constants for positronium interactions with these atoms are determined and compared with existing data. After correcting the RPAE polarizabilities to fit the most accurate static polarizability data, our best predictions of C6 for Ps–noble-gas pairs are expected to be accurate to within 1%, and to within a few percent for the alkaline-earth metals. We also used accurate dynamic dipole polarizabilities from the literature to compute the C6 coefficients for the alkali-metal atoms. Implications of increased C6 values for Ps scattering from more polarizable atoms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate elastic scattering of positronium (Ps) by the Xe atom using the recently developed pseudopotential method (Fabrikant and Gribakin 2014 Phys. Rev. A 90 052717) and review general features of Ps scattering from heavier rare-gas atoms: Ar, Kr and Xe. The total scattering cross section is dominated by two contributions: elastic scattering and Ps ionization (break-up). To calculate the Ps ionization cross sections we use the binary-encounter method for Ps collisions with an atomic target. Our results for the ionization cross section agree well with previous calculations carried out in the impulse approximation. Our total Ps–Xe cross section, when plotted as a function of the projectile velocity, exhibits similarity with the electron-Xe cross section for the collision velocities higher than 0.8 a.u., and agrees very well with the measurements at Ps velocities above 0.5 a.u.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this short review we look at bound states, positron-atom scattering. positronium-atom scattering. positronium-positronium scattering, cold antihydrogen and annihilation. (c) 2005 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A many-body theory approach is developed for the problem of positron-atom scattering and annihilation. Strong electron- positron correlations are included nonperturbatively through the calculation of the electron-positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we make use of B-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We have also devised an extrapolation procedure that allows one to achieve convergence with respect to the number of intermediate- state orbital angular momenta included in the calculations. As a test, the present formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree with those of accurate variational calculations. We also examine in detail the properties of the large correlation corrections to the annihilation vertex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent paper [Phys. Rev. Lett. 88, 163202 (2002)] we established the threshold behavior of the cross section of positron-atom annihilation into two gamma quanta near the positronium (Ps)-formation threshold. Here, the near-threshold behavior of the positron 3 gamma annihilation cross section and its relation to the ortho-Ps-formation cross section are determined. We also analyze the feasibility of observing these effects by examining the effect of the ?nite-energy resolution of a positron beam on the threshold behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A many-body theory approach developed by the authors [Phys. Rev. A 70, 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns^{-1}, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the properties of the lifetime or the time-delay matrix Q(E) for multichannel scattering, which is related to the scattering matrix S(E) by Q = i?S(dS†/dE). For two overlapping resonances occurring at energies E with widths G(? = 1, 2), with an energy-independent background, only two eigenvalues of Q(E) are proved to be different from zero and to show typical avoided-crossing behaviour. These eigenvalues are expressible in terms of the four resonance parameters (E , G) and a parameter representing the strength of the interaction of the resonances. An example of the strong and weak interaction in an overlapping double resonance is presented for the positronium negative ion. When more than two resonances overlap (? = 1, ..., N), no simple representation of each eigenvalue has been found. However, the formula for the trace of the Q-matrix leads to the expression d(E) = -?arctan[(G/2)/(E - E)] + d(E) for the eigenphase sum d(E) and the background eigenphase sum d(E), in agreement with the known form of the state density. The formulae presented in this paper are useful in a parameter fitting of overlapping resonances. © 2006 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A report is presented of the XIIth International Workshop on Positron and Positronium Physics (Sandbjerg, Denmark, 19-21 July 2003). This workshop covered positron and positronium interactions with atoms, molecules and condensed matter systems. One key development reported was the first creation in the laboratory of low-energy antihydrogen atoms. Facets of positron-electron many-body systems were also considered, including the positronium molecule and BEC gases of positronium atoms. Aspects of the future of the field were discussed, including the development of new theoretical and experimental capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent report on the correlation between enhanced polymer mobility and ionic conductivity at room temperature in plasticized polyether-urethane solid polymer electrolytes (Forsyth et al.[1]), has prompted the present investigation. Positron annihilation lifetime spectroscopy (PALS) has been used to study the effect of plasticizer addition on the room temperature free volume characteristics of the crosslinked polyether-urethane. The addition of low molecular weight plasticizers to the polyether-urethane results in a constant or decreasing mean free volume cavity radius, as measured by the orthoPositronium lifetime τ3, and a decreasing relative concentration of free volume cavities as measured by the ortho-Positronium intensity, I3. It is postulated that the plasticizers interrupt polymer-polymer interactions by occupying the inter- and intra-chain free volume. The plasticizer structure influences the polymerplasticizer interactions which affect inter- and intra-chain separation and hence the free volume of the system. The decrease in polymer-polymer interaction and the increase in polymer-plasticizer interaction in turn influence the glass transition temperature behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G′) became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.