967 resultados para Portlet-based application
Resumo:
En este proyecto se estudian y analizan las diferentes técnicas de procesado digital de señal aplicadas a acelerómetros. Se hace uso de una tarjeta de prototipado, basada en DSP, para realizar las diferentes pruebas. El proyecto se basa, principalmente, en realizar filtrado digital en señales provenientes de un acelerómetro en concreto, el 1201F, cuyo campo de aplicación es básicamente la automoción. Una vez estudiadas la teoría de procesado y las características de los filtros, diseñamos una aplicación basándonos sobre todo en el entorno en el que se desarrollaría una aplicación de este tipo. A lo largo del diseño, se explican las diferentes fases: diseño por ordenador (Matlab), diseño de los filtros en el DSP (C), pruebas sobre el DSP sin el acelerómetro, calibración del acelerómetro, pruebas finales sobre el acelerómetro... Las herramientas utilizadas son: la plataforma Kit de evaluación 21-161N de Analog Devices (equipado con el entorno de desarrollo Visual DSP 4.5++), el acelerómetro 1201F, el sistema de calibración de acelerómetros CS-18-LF de Spektra y los programas software MATLAB 7.5 y CoolEditPRO 2.0. Se realizan únicamente filtros IIR de 2º orden, de todos los tipos (Butterworth, Chebyshev I y II y Elípticos). Realizamos filtros de banda estrecha, paso-banda y banda eliminada, de varios tipos, dentro del fondo de escala que permite el acelerómetro. Una vez realizadas todas las pruebas, tanto simulaciones como físicas, se seleccionan los filtros que presentan un mejor funcionamiento y se analizan para obtener conclusiones. Como se dispone de un entorno adecuado para ello, se combinan los filtros entre sí de varias maneras, para obtener filtros de mayor orden (estructura paralelo). De esta forma, a partir de filtros paso-banda, podemos obtener otras configuraciones que nos darán mayor flexibilidad. El objetivo de este proyecto no se basa sólo en obtener buenos resultados en el filtrado, sino también de aprovechar las facilidades del entorno y las herramientas de las que disponemos para realizar el diseño más eficiente posible. In this project, we study and analize digital signal processing in order to design an accelerometer-based application. We use a hardware card of evaluation, based on DSP, to make different tests. This project is based in design digital filters for an automotion application. The accelerometer type is 1201F. First, we study digital processing theory and main parameters of real filters, to make a design based on the application environment. Along the application, we comment all the different steps: computer design (Matlab), filter design on the DSP (C language), simulation test on the DSP without the accelerometer, accelerometer calibration, final tests on the accelerometer... Hardware and software tools used are: Kit of Evaluation 21-161-N, based on DSP, of Analog Devices (equiped with software development tool Visual DSP 4.5++), 1201-F accelerometer, CS-18-LF calibration system of SPEKTRA and software tools MATLAB 7.5 and CoolEditPRO 2.0. We only perform 2nd orden IIR filters, all-type : Butterworth, Chebyshev I and II and Ellyptics. We perform bandpass and stopband filters, with very narrow band, taking advantage of the accelerometer's full scale. Once all the evidence, both simulations and physical, are finished, filters having better performance and analyzed and selected to draw conclusions. As there is a suitable environment for it, the filters are combined together in different ways to obtain higher order filters (parallel structure). Thus, from band-pass filters, we can obtain many configurations that will give us greater flexibility. The purpose of this project is not only based on good results in filtering, but also to exploit the facilities of the environment and the available tools to make the most efficient design possible.
Resumo:
Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.
Resumo:
Las redes inalámbricas están experimentando un gran crecimiento en el campo de la instrumentación electrónica. En concreto las redes de sensores inalámbricas (WSN de Wireless Sensor Network) suponen la opción más ventajosa para su empleo en la instrumentación electrónica ya que sus principales características se acoplan perfectamente a las necesidades. Las WSN permiten la utilización de un número relativamente alto de nodos, están orientadas a sistemas de bajo consumo y funcionamiento con baterías y poseen un ancho de banda adecuado para las necesidades de la instrumentación electrónica. En este proyecto fin de carrera se ha realizado un estudio de las tecnologías inalámbricas disponibles, se han comparado y se ha elegido la tecnología ZigBeeTM por considerarse la más adecuada y la que más se ajusta a las necesidades descritas. En el desarrollo de mi vida profesional se han conectado dos campos teóricamente distantes como son la instrumentación electrónica y la ingeniería civil. En este proyecto se hace una descripción de la instrumentación que se utiliza para controlar estructuras como presas, túneles y puentes y se proponen casos prácticos en los que las redes WSN aportan valor añadido a instrumentación actual y a los sistemas de comunicaciones utilizados. Se definen tanto los sistemas de comunicaciones utilizados actualmente como una serie de sensores utilizados para medir los principales parámetros a controlar en una obra civil. Por último se ha desarrollado una aplicación de prueba de una red ZigBeeTM basada en equipos comerciales del fabricante Digi. consiste en una aplicación desarrollada en entorno web que maneja de forma remota, a través de Internet, las entradas y salidas digitales y analógicas de los nodos que forman la red. Se forma una red ZigBeeTM con un coordinador, un router y un dispositivo final. El Coordinador está integrado en un Gateway que permite acceder a la red ZigBeeTM a través de internet y conocer el estado de los nodos que forman la red. Con los comandos adecuados se puede leer el estado de las entradas y salidas analógicas y digitales y cambiar el estado de una salida digital. ABSTRACT. Wireless networks are experiencing tremendous growth in the field of electronic instrumentation. In particular wireless sensor networks represent the most advantageous for use in electronic instrumentation since its main characteristics fit perfectly to the needs. The WSN allow the use of a relatively large number of nodes, are aimed at low-power systems and battery operation and have an adequate bandwidth for the needs of electronic instrumentation. In this project has made a study of available wireless technologies have been compared and chosen ZigBeeTM technology was considered the most appropriate to the needs described. In the course of my professional life have connected two fields are theoretically distant as electronic instrumentation and civil engineering. In this project, there is a description of the instrumentation used to control structures such as dams, tunnels and bridges and proposes practical cases in which WSN networks add value to current instrumentation and communications systems used. There are defined as communications systems now being used as a set of sensors used to measure the main parameters to be controlled in a civil structure. Finally, I have developed a test application based ZigBeeTM networking equipment maker Digi trading. It consists of a Web-based application developed to manage remotely, via the Internet, the digital and analog inputs and outputs nodes forming the network. ZigBeeTM It forms a network with a coordinator, router and end device. The Coordinator is built into a gateway that allows access to the ZigBeeTM network through internet and know the status of the nodes forming the network. With the appropriate command can read the status of the digital inputs and outputs and change the state of a digital output.
Resumo:
Background: Healthy diet and regular physical activity are powerful tools in reducing diabetes and cardiometabolic risk. Various international scientific and health organizations have advocated the use of new technologies to solve these problems. The PREDIRCAM project explores the contribution that a technological system could offer for the continuous monitoring of lifestyle habits and individualized treatment of obesity as well as cardiometabolic risk prevention. Methods: PREDIRCAM is a technological platform for patients and professionals designed to improve the effectiveness of lifestyle behavior modifications through the intensive use of the latest information and communication technologies. The platform consists of a web-based application providing communication interface with monitoring devices of physiological variables, application for monitoring dietary intake, ad hoc electronic medical records, different communication channels, and an intelligent notification system. A 2-week feasibility study was conducted in 15 volunteers to assess the viability of the platform. Results: The website received 244 visits (average time/session: 17 min 45 s). A total of 435 dietary intakes were recorded (average time for each intake registration, 4 min 42 s ± 2 min 30 s), 59 exercises were recorded in 20 heart rate monitor downloads, 43 topics were discussed through a forum, and 11 of the 15 volunteers expressed a favorable opinion toward the platform. Food intake recording was reported as the most laborious task. Ten of the volunteers considered long-term use of the platform to be feasible. Conclusions: The PREDIRCAM platform is technically ready for clinical evaluation. Training is required to use the platform and, in particular, for registration of dietary food intake.
Resumo:
This article describes a knowledge-based application in the domain of road traffic management that we have developed following a knowledge modeling approach and the notion of problem-solving method. The article presents first a domain-independent model for real-time decision support as a structured collection of problem solving methods. Then, it is described how this general model is used to develop an operational version for the domain of traffic management. For this purpose, a particular knowledge modeling tool, called KSM (Knowledge Structure Manager), was applied. Finally, the article shows an application developed for a traffic network of the city of Madrid and it is compared with a second application developed for a different traffic area of the city of Barcelona.
Resumo:
El proyecto consiste en el diseño y estudio de un software cuyas prestaciones estén orientadas a gestionar una simulación de un sistema de radar. El prototipo de este entorno de simulación se ha realizado en el lenguaje Matlab debido a que inicialmente se considera el más adecuado para el tratamiento de las señales que los sistemas de radar manejan para realizar sus cálculos. Se ha escogido como modelo el software desarrollado por la compañía SAP para gestionar los E.R.P.s de grandes empresas. El motivo es que es un software cuyo diseño y funcionalidad es especialmente adecuado para la gestión ordenada de una cantidad grande de datos diversos de forma integrada. Diseñar e implementar el propio entorno es una tarea de enorme complejidad y que requerirá el esfuerzo de una cantidad importante de personas; por lo que este proyecto se ha limitado, a un prototipo básico con una serie de características mínimas; así como a indicar y dejar preparado el camino por el que deberán transcurrir las futuras agregaciones de funcionalidad o mejoras. Funcionalmente, esto es, independientemente de la implementación específica con la que se construya el entorno de simulación, se ha considerado dividir las características y prestaciones ofrecidas por el sistema en bloques. Estos bloques agruparán los componentes relacionados con un aspecto específico de la simulación, por ejemplo, el bloque 1, es el asignado a todo lo relacionado con el blanco a detectar. El usuario del entorno de simulación interactuará con el sistema ejecutando lo que se llaman transacciones, que son agrupaciones lógicas de datos a introducir/consultar en el sistema relacionados y que se pueden ejecutar de forma independiente. Un ejemplo de transacción es la que permite mantener una trayectoria de un blanco junto con sus parámetros, pero también puede ser una transacción la aplicación que permite por ejemplo, gestionar los usuarios con acceso al entorno. Es decir, las transacciones son el componente mínimo a partir del cual el usuario puede interactuar con el sistema. La interfaz gráfica que se le ofrecerá al usuario, está basada en modos, que se pueden considerar “ventanas” independientes entre sí dentro de las cuáles el usuario ejecuta sus transacciones. El usuario podrá trabajar con cuantos modos en paralelo desee y cambiar según desee entre ellos. La programación del software se ha realizado utilizando la metodología de orientación a objetos y se ha intentado maximizar la reutilización del código así como la configurabilidad de su funcionalidad. Una característica importante que se ha incorporado para garantizar la integridad de los datos es un diccionario sintáctico. Para permitir la persistencia de los datos entre sesiones del usuario se ha implementado una base de datos virtual (que se prevé se reemplace por una real), que permite manejar, tablas, campos clave, etc. con el fin de guardar todos los datos del entorno, tanto los de configuración que solo serían responsabilidad de los administradores/desarrolladores como los datos maestros y transaccionales que serían gestionados por los usuarios finales del entorno de simulación. ABSTRACT. This end-of-degree project comprises the design, study and implementation of a software based application able to simulate the various aspects and performance of a radar system. A blueprint for this application has been constructed upon the Matlab programming language. This is due to the fact that initially it was thought to be the one most suitable to the complex signals radar systems usually process; but it has proven to be less than adequate for all the other core processes the simulation environment must provide users with. The software’s design has been based on another existing software which is the one developed by the SAP company for managing enterprises, a software categorized (and considered the paradigm of) as E.R.P. software (E.R.P. stands for Enterprise Resource Planning). This software has been selected as a model because is very well suited (its basic features) for working in an orderly fashion with a pretty good quantity of data of very diverse characteristics, and for doing it in a way which protects the integrity of the data. To design and construct the simulation environment with all its potential features is a pretty hard task and requires a great amount of effort and work to be dedicated to its accomplishment. Due to this, the scope of this end-of-degree project has been focused to design and construct a very basic prototype with minimal features, but which way future developments and upgrades to the systems features should go has also been pointed. In a purely functional approach, i.e. disregarding completely the specific implementation which accomplishes the simulation features, the different parts or aspects of the simulation system have been divided and classified into blocks. The blocks will gather together and comprise the various components related with a specific aspect of the simulation landscape, for example, block number one will be the one dealing with all the features related to the radars system target. The user interaction with the system will be based on the execution of so called transactions, which essentially consist on bunches of information which logically belong together and can thus be managed together. A good example, could be a transaction which permits to maintain a series of specifications for target’s paths; but it could also be something completely unrelated with the radar system itself as for example, the management of the users who can access the system. Transactions will be thus the minimum unit of interaction of users with the system. The graphic interface provided to the user will be mode based, which can be considered something akin to a set of independent windows which are able on their own to sustain the execution of an independent transaction. The user ideally should be able to work with as many modes simultaneously as he wants to, switching his focus between them at will. The approach to the software construction has been based on the object based paradigm. An effort has been made to maximize the code’s reutilization and also in maximizing its customizing, i.e., same sets of code able to perform different tasks based on configuration data. An important feature incorporated to the software has been a data dictionary (a syntactic one) which helps guarantee data integrity. Another important feature that allow to maintain data persistency between user sessions, is a virtual relational data base (which should in future times become a real data base) which allows to store data in tables. The data store in this tables comprises both the system’s configuration data (which administrators and developers will maintain) and also master and transactional data whose maintenance will be the end users task.
Resumo:
The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients’ self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient’s access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients’ personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients’ acceptance of the whole system.
Resumo:
REACH is a very demanding system for any business either large or small, yet right from the start one of the more serious concerns was whether and how SMEs could cope with the Regulation. After all, some 27,600 companies in EU chemistry are SMEs (95% of all firms). Seven years down the line, many of these fears are materialising. Assuming no significant changes are introduced to REACH, this paper suggests the following recommendations: Above all, we strongly encourage SMEs to start early and develop a strategy for REACH compliance well before 2018. Address the potential competition law implications of current SIEF arrangements, e.g. through a Guidance document from DG Competition by 2014 (in time for 2018) Facilitate the exchange of information along the value chain by adopting pragmatic approach to the content and format of Safety Data Sheets. More can be done on the IT front as well, for instance by developing tools that generate compliant Safety Data Sheets. Improve the communication of REACH and its intended goals, that is, the health and environmental benefits, to the wider public. SMEs regret the unawareness of the public in the light of the enormous efforts they have to undertake. In the event of a later review of REACH, the logic should be risk-based rather than hazard-based.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The introduction of agent technology raises several security issues that are beyond conventional security mechanisms capability and considerations, but research in protecting the agent from malicious host attack is evolving. This research proposes two approaches to protecting an agent from being attacked by a malicious host. The first approach consists of an obfuscation algorithm that is able to protect the confidentiality of an agent and make it more difficult for a malicious host to spy on the agent. The algorithm uses multiple polynomial functions with multiple random inputs to convert an agent's critical data to a value that is meaningless to the malicious host. The effectiveness of the obfuscation algorithm is enhanced by addition of noise code. The second approach consists of a mechanism that is able to protect the integrity of the agent using state information, recorded during the agent execution process in a remote host environment, to detect a manipulation attack by a malicious host. Both approaches are implemented using a master-slave agent architecture that operates on a distributed migration pattern. Two sets of experimental test were conducted. The first set of experiments measures the migration and migration+computation overheads of the itinerary and distributed migration patterns. The second set of experiments is used to measure the security overhead of the proposed approaches. The protection of the agent is assessed by analysis of its effectiveness under known attacks. Finally, an agent-based application, known as Secure Flight Finder Agent-based System (SecureFAS) is developed, in order to prove the function of the proposed approaches.
Resumo:
In the UK, Open Learning has been used in industrial training for at least the last decade. Trainers and Open Learning practitioners have been concerned about the quality of the products and services being delivered. The argument put forward in this thesis is that there is ambiguity amongst industrialists over the meanings of `Open Learning' and `Quality in Open Learning'. For clarity, a new definition of Open Learning is proposed which challenges the traditional learner-centred approach favoured by educationalists. It introduces the concept that there are benefits afforded to the trainer/employer/teacher as well as to the learner. This enables a focussed view of what quality in Open Learning really means. Having discussed these issues, a new quantitative method of evaluating Open Learning is proposed. This is based upon an assessment of the degree of compliance with which products meet Parts 1 & 2 of the Open Learning Code of Practice. The vehicle for these research studies has been a commercial contract commissioned by the Training Agency for the Engineering Industry Training Board (EITB) to examine the quality of Open Learning products supplied to the engineering industry. A major part of this research has been the application of the evaluation technique to a range of 67 Open Learning products (in eight subject areas). The findings were that good quality products can be found right across the price range - so can average and poor quality ones. The study also shows quite convincingly that there are good quality products to be found at less than 50. Finally the majority (24 out of 34) of the good quality products were text based.
Resumo:
Systematically investigated the waveguide dispersion characteristics of LPFGs. It has been revealed that the coupled cladding modes resonating in the dispersion-turning-point region are intrinsically sensitive to the external perturbation. Thus, LPFG-based application devices requiring good stability should avoid this region. On the other hand, this mode ultra-sensitive-zone can be explored to realise sensors and tuneable filters of high efficiency.
Resumo:
This article describes the approach adopted and the results obtained by the international team developing WBLST (Web Based Learning in Sciences and Technologies) a Web-based application for e-learning, developed for the students of “UVPL: Université Virtuelle des Pays de la Loire”. The developed e-learning system covers three levels of learning activities - content, exercises, and laboratory. The delivery model is designed to operate with domain concepts as relevant providers of semantic links. The aim is to facilitate the overview and to help the establishment of a mental map of the learning material. The implemented system is strongly based on the organization of the instruction in virtual classes. The obtained quality of the system is evaluated on the bases of feedback form students and professors.
Resumo:
Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. ^ In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. ^ In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications. ^
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.