741 resultados para Polyunsaturated fatty acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose It has been shown that lutein and zeaxanthin accumulate in the macula where they enhance contrast sensitivity and may reduce the risk of progression to advanced age-related macular degeneration (AMD). Furthermore, omega-3 long-chain polyunsaturated fatty acids (PUFA) might further reduce this risk. However, controversy exists regarding whether PUFA may reduce the bioavailability of lutein. Methods This was a prospective 12-month, randomized, open label study evaluating the effect of supplementation with lutein, other antioxidants, and minerals on contrast sensitivity (CS) and macular pigment optical density (MPOD) in patients with age-related maculopathy. A total of 79 patients were randomized to either lutein (10 mg) and antioxidant supplement or lutein and antioxidant supplement in combination with PUFA. Patients received supplementation for a period of 6 months and were followed for a total of 12 months. Results Serum lutein and zeaxanthin increased significantly by the first follow-up visit at 1 month, and remained elevated throughout the intervention period of 6 months in the lutein-only group but not in the lutein+PUFA group. Macular pigment optical density and CS increased significantly in the lutein-only group (P < 0.005) but not in the lutein+PUFA group (P = 0.059) compared to baseline. Best-corrected visual acuity remained unchanged during the entire study period in both groups. Conclusions Addition of PUFA may reduce the bioavailability of lutein and therefore lessen the beneficial effect on macular pigment and CS. This needs to be considered when prescribing lutein supplements to patients with low lutein levels. (ClinicalTrials.gov number, NCT00563979.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzymes that are involved in the elongation of fatty acids differ in terms of the substrates on which they act. To date, the enzymes specifically involved in the biosynthesis of polyunsaturated fatty acids have not yet been identified. In an attempt to identify a gene(s) encoding an enzyme(s) specific for the elongation of γ-linolenic acid (GLA) (18:3n-6), a cDNA expression library was made from the fungus Mortierella alpina. The cDNA library constructed in a yeast expression vector was screened by measuring the expressed elongase activity [conversion of GLA to dihomo-GLA (20:3n-6)] from an individual yeast clone. In this report, we demonstrate the isolation of a cDNA (GLELO) whose encoded protein (GLELOp) was involved in the conversion of GLA to dihomo-GLA in an efficient manner (60% conversion). This cDNA contains a 957-nucleotide ORF that encodes a protein of 318 amino acids. Substrate specificity analysis revealed that this fungal enzyme acted also on stearidonic acid (18:4n-3). This report identifies and characterizes an elongase subunit that acts specifically on the two Δ6-desaturation products, 18:3n-6 and 18:4n-3. When this GLELO cDNA was coexpressed with M. alpina Δ5-desaturase cDNA in yeast, it resulted in the conversion of GLA to arachidonic acid (20:4n-6) as well as the conversion of stearidonic acid to eicosopentaenoic acid (20:5n-3). Thus, this GLELO gene may play an critical role in the bio-production of both n-6 and n-3 polyunsaturated fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that long-chain polyunsaturated fatty acids (PUFAs) can prevent cardiac arrhythmias by a reduction of cardiomyocyte excitability. This was shown to be due to a modulation of the voltage-dependent inactivation of both sodium (INa) and calcium (ICa) currents. To establish whether PUFAs also regulate neuronal excitability, the effects of PUFAs on INa and ICa were assessed in CA1 neurons freshly isolated from the rat hippocampus. Extracellular application of PUFAs produced a concentration-dependent shift of the voltage dependence of inactivation of both INa and ICa to more hyperpolarized potentials. Consequently, they accelerated the inactivation and retarded the recovery from inactivation. The EC50 for the shift of the INa steady-state inactivation curve was 2.1 +/- 0.4 microM for docosahexaenoic acid (DHA) and 4 +/- 0.4 microM for eicosapentaenoic acid (EPA). The EC50 for the shift on the ICa inactivation curve was 2.1 +/- 0.4 for DHA and > 15 microM for EPA. Additionally, DHA and EPA suppressed both INa and ICa amplitude at concentrations > 10 microM. PUFAs did not affect the voltage dependence of activation. The monounsaturated oleic acid and the saturated palmitic acid were virtually ineffective. The combined effects of the PUFAs on INa and ICa may reduce neuronal excitability and may exert anticonvulsive effects in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coenzyme Q (ubiquinone or Q) plays a well known electron transport function in the respiratory chain, and recent evidence suggests that the reduced form of ubiquinone (QH2) may play a second role as a potent lipid-soluble antioxidant. To probe the function of QH2 as an antioxidant in vivo, we have made use of a Q-deficient strain of Saccharomyces cerevisiae harboring a deletion in the COQ3 gene [Clarke, C. F., Williams, W. & Teruya, J. H. (1991) J. Biol. Chem. 266, 16636-16644]. Q-deficient yeast and the wild-type parental strain were subjected to treatment with polyunsaturated fatty acids, which are prone to autoxidation and breakdown into toxic products. In this study we find that Q-deficient yeast are hypersensitive to the autoxidation products of linolenic acid and other polyunsaturated fatty acids. In contrast, the monounsaturated oleic acid, which is resistant to autoxidative breakdown, has no effect. The hypersensitivity of the coq3delta strains can be prevented by the presence of the COQ3 gene on a single copy plasmid, indicating that the sensitive phenotype results solely from the inability to produce Q. As a result of polyunsaturated fatty acid treatment, there is a marked elevation of lipid hydroperoxides in the coq3 mutant as compared with either wild-type or respiratory-deficient control strains. The hypersensitivity of the Q-deficient mutant can be rescued by the addition of butylated hydroxytoluene, alpha-tocopherol, or trolox, an aqueous soluble vitamin E analog. The results indicate that autoxidation products of polyunsaturated fatty acids mediate the cell killing and that QH2 plays an important role in vivo in protecting eukaryotic cells from these products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of free polyunsaturated fatty acids (PUFA) on the binding of ligands to receptors on voltage-sensitive Na+ channels of neonatal rat cardiac myocytes were assessed. The radioligand was [benzoyl-2,5-(3)H] batrachotoxinin A 20alpha-benzoate ([(3)H]BTXB), a toxin that binds to the Na+ channel. The PUFA that have been shown to be antiarrhythmic, including eicosapentaenoic acid (EPA; C20:5n-3), docosahexaenoic acid (DHA; C22:6n-3), eicosatetraynoic acid (ETYA), linolenic acid (C18:3n-3), and linoleic acid (C18:2n-6), inhibited [(3)H]BTXB binding in a dose-dependent fashion with IC50 values of 28-35 microM, whereas those fatty acids that have no antiarrhythmic effects including saturated fatty acid (stearic acid, C18:0), monounsaturated fatty acid (oleic acid; C18:1n-9), and EPA methyl ester did not have a significant effect on [(3)H]BTXB binding. Enrichment of the myocyte membrane with cholesterol neither affected [(3)H]BTXB binding when compared with control cells nor altered the inhibitory effects of PUFA on [(3)H]BTXB binding. Scatchard analysis of [(3)H]BTXB binding showed that EPA reduced the maximal binding without altering the Kd for [(3)H]BTXB binding, indicating allosteric inhibition. The inhibition by EPA of [(3)H]BTXB binding was reversible (within 30 min) when delipidated bovine serum albumin was added. The binding of the PUFA to this site on the Na+ channel is reversible and structure-specific and occurs at concentrations close to those required for apparent antiarrhythmic effects and a blocking effect on the Na+ current, suggesting that binding of the PUFA at this site relates to their antiarrhythmic action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that polyunsaturated long-chain fatty acids (PUFAs) prevent lethal ischemia-induced cardiac arrhythmias in animals and probably in humans. To increase understanding of the mechanism(s) of this phenomenon, the effects of PUFAs on Na+ currents were assessed by the whole-cell patch-clamp technique in cultured neonatal rat ventricular myocytes. Extracellular application of the free 5,8,11,14,17-eicosapentaenoic acid (EPA) produced a concentration-dependent suppression of ventricular, voltage-activated Na+ currents (INa). After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min. Likewise, the same concentrations of 4,7,10,16,19-docosahexaenoic acid produced the same inhibition of INa. By contrast, 5 and 10 microM arachidonic acid (AA) caused less inhibition of INa, but both n - 6 and n - 3 PUFAs inhibited INa significantly. A monounsaturated fatty acid and a saturated fatty acid did not. After washing out EPA, INa returned to the control level. Raising the concentration of EPA to 40 microM completely blocked INa. The IC50 of EPA was 4.8 microM. The inhibition of this Na+ channel was found to be dose and time, but not use dependent. Also, the EPA-induced inhibition of INa was voltage dependent, since 10 microM EPA produced 83% +/- 7% and 29% +/- 5% inhibition of INa elicited by pulses from -80 to -30 mV and from -150 to -30 mV, respectively, in single-step voltage changes. A concentration of 10 microM EPA shifted the steady-state inactivation curve of INa by -19 +/- 3 mV (n = 7; P < 0.01). These effects of PUFAs on INa may be important for their antiarrhythmic effect in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because previous studies showed that polyunsaturated fatty acids can reduce the contraction rate of spontaneously beating heart cells and have antiarrhythmic effects, we examined the effects of the fatty acids on the electrophysiology of the cardiac cycle in isolated neonatal rat cardiac myocytes. Exposure of cardiomyocytes to 10 microM eicosapentaenoic acid for 2-5 min markedly increased the strength of the depolarizing current required to elicit an action potential (from 18.0 +/- 2.4 pA to 26.8 +/- 2.7 pA, P < 0.01) and the cycle length of excitability (from 525 ms to 1225 ms, delta = 700 +/- 212, P < 0.05). These changes were due to an increase in the threshold for action potential (from -52 mV to -43 mV, delta = 9 +/- 3, P < 0.05) and a more negative resting membrane potential (from -52 mV to -57 mV, delta = 5 +/- 1, P < 0.05). There was a progressive prolongation of intervals between spontaneous action potentials and a slowed rate of phase 4 depolarization. Other polyunsaturated fatty acids--including docosahexaenoic acid, linolenic acid, linoleic acid, arachidonic acid, and its nonmetabolizable analog eicosatetraynoic acid, but neither the monounsaturated oleic acid nor the saturated stearic acid--had similar effects. The effects of the fatty acids could be reversed by washing with fatty acid-free bovine serum albumin. These results show that free polyunsaturated fatty acids can reduce membrane electrical excitability of heart cells and provide an electrophysiological basis for the antiarrhythmic effects of these fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transplantable murine colon adenocarcinoma (MAC16) was utilised as a model of human cancer cachexia. This tumour has been found to produce extensive weight loss, characterised by depletion of host body protein and lipid stores at a small tumour burden. This weight loss has been found to be associated with production by the tumour of a lipolytic factor, activity of which was inhibited in vitro by the polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA). EPA has also been shown to possess anti-tumour and anti-cachectic activity in vivo, leading to the hypothesis that fatty acids mobilised by the lipolytic factor supply a growth requirement of the MAC16 tumour. In this study mobilisation and sequestration of fatty acids by the tumour was found to be non-specific, although a relationship between weight loss and arachidonic acid (AA) concentration was found in both tumour-bearing mice, and human cancer patients. The anti-tumour effect of EPA, which was found to be associated with an increase in cell loss, but not its anti-cachectic activity, was reversed by the administration of the PUFAs oleic acid (OA) and linoleic acid (LA). LA was also found to be capable of stimulating tumour growth. Inhibition of either the cyclooxygenase or lipoxygenase pathways was found to result in reduction of tumour growth, leading to the implication of one of the metabolites of LA or AA in tumour growth and cachexia. The ethyl ester of EPA was found to be inactive against the growth and cachexia of the MAC16 tumour, due to its retarded uptake compared with the free acid. The anti-proliferative agent 5-fluorouracil was found to cause tumour growth inhibition, and when given in combination with EPA, reduced the phase of tumour regrowth observed after 4 to 5 days of treatment with EPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On 2 July 2009, the EFSA Panel on Dietetic products, Nutrition and Allergies (NDA) endorsed a draft Opinion on Dietary Reference Values for fats to be released for public consultation. This Scientific Report summarises the comments received through the public consultation and outlines how these were taken into account in the final opinion. EFSA had received contributions from 40 interested parties (individuals, non-governmental organisations, industry organisations, academia and national assessment bodies). The main comments which were received during the public consultation related to: the availability of more recent data, the nomenclature used, the use of a non-European food composition data base, the impact of genetic factors in modulating the absorption, metabolism and health effects of different fatty acids, the definition of “nutritionally adequate diet”, the use of Dietary Reference Values in the labelling of foods, the translation of advice into food-based dietary guidelines, nutrient goals and recommendations, certain risk management issues, and to Dietary Reference Values of fats, individual fatty acids, and cholesterol. All the public comments received that related to the remit of EFSA were assessed and the Opinion on Dietary Reference Values for fats has been revised taking relevant comments into consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the fishing season, in 2000, samples of species persian sturgeon (A. persicus), Severjuga (A. stellatus) and Mullet (L. aurata), were caught from the southern coasts of Caspian Sea and were freezes and preserved in the cold storage for one year They have also become biometery. The tissue's fillet were identified in order to determined the Fatty Acids. This was done during one year, frequently, fresh, two weeks after freezing and then monthly, respectively. So, after the extraction of lipids from the tissues and methylation, was injected to the gas-liquid Chromatography. After calibration, identified Fatty Acids were compared with standards according to their Retention Times. Peroxid value, lipid content and humidity were controlled. The unsaturated Fatty acids had The most amount, and a plenty of Polyunsaturated Fatty acids (PUFA) were observed, so that linoleic (C18:2), a-linolenic (C18:3), Arashidonic (C20:4), EPA (C20:5) and DHA (C22:6) Fatty acids had high amounts. The w-3, PUFA were more in comparison with w-6. The effects of freezing and cold storing on the fish fatty acids , were evaluated by the statistical tests , like SPSS, Tukey, Homogenous and Anova, and showed that in some species, a group of Fatty acids, specially PUFA, had some variation. The peroxide value that indicates the lipid deterioration, increased during toring. So, the best term if preserving in the cold storage, were determined and their Nutrition value and Medical applications due to their consumption were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid compositions of 22 species of marine macrophytes, belonging to the Ceramiales, Cryptonemiales, Nemalionales, Laminariales, Chordariales, Scytosiphonales, Desmarestiales, Dictyosiphonales, Fucales, Dictyotales and Ulvales and collected from the Bohai Sea, were determined by capillary gas chromatography. The contents of polyunsaturated fatty acids (FAs) in the Bohai Sea algae, in comparison with the same species from the Yellow Sea were found to be lower. Red algae had relatively high levels of the acids 16:0, 18:1(n-7), 18:1(n-9), 20:5(n-3) and 20:4(n-6), and those examined were rich in C-20 PUFAs, these chiefly being arachidonic and eicosapentaenoic acids. The major FAs encountered in the Phaeophyta were 14:0, 16:0, 18:1(n-9), 18:2(n-6), 18:3(n-3), 18:4(n-3), 20:4(n-6) and 20:5(n-3). C18PUFAs are of greater abundance in the brown algae than in the red algae examined. All three green algae from the Ulvales had similar fatty acid patterns with major components, 16:0, 16:4(n-3), 18:1(n-7), 18:2(n-6), 18:3(n-3), and 18:4(n-3). They contained 16:3(n-3) and more 16:4(n-3), were rich in C18PUFAs, chiefly 18:3(n-3) and 18:4(n-3) and had 18:1(n-7)/18:1 (n-9) ratios higher than 1. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to explore the effect of different autoclave heating times (30, 60 and 90 min) on fatty acids supply and molecular stability in Brassica carinata seed. Multivariate spectral analyses and correlation analyses were also carried out in our study. The results showed that autoclaving treatments significantly decreased the total fatty acids content in a linear fashion in B. carinata seed as heating time increased. Reduced concentrations were also observed in C18:3n3, C20:1, C22:1n9, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega 3 (ω-3) and 9 (ω-9) fatty acids. Correspondingly, the heated seeds showed dramatic reductions in all the peak intensities within lipid-related spectral regions. Results from agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA) indicated that the raw oilseed had completely different structural make-up from the autoclaved seeds in both CH3 and CH2 asymmetric and symmetric stretching region (ca. 2999–2800 cm−1) and lipid ester Cdouble bond; length as m-dashO carbonyl region (ca. 1787–1706 cm−1). However, the oilseeds heated for 30, 60 and 90 min were not grouped into separate classes or ellipses in all the lipid-related regions, indicating that there still exhibited similarities in lipid biopolymer conformations among autoclaved B. carinata seeds. Moreover, strong correlations between spectral information and fatty acid compositions observed in our study could imply that lipid-related spectral parameters might have a potential to predict some fatty acids content in oilseed samples, i.e. B. carinata. However, more data from large sample size and diverse range would be necessary and helpful to draw up a final conclusion.