998 resultados para Polystyrene-b-polymethylmethacrylate
Resumo:
The present study evaluated the effect of aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)) either alone, or in association, on rat primary hepatocyte cultures. Cell viability was assessed by flow cytometry after propidium iodine intercalation. DNA fragmentation and apoptosis were assessed by agarose gel electrophoresis and acridine orange and ethidium bromide staining. At the concentrations of AFB(1) and FB(1) used, the toxins did not decrease cell viability, but did induce apoptosis in a concentration and time-dependent manner.
Resumo:
Background: Areas that are endemic for malaria are also highly endemic for hepatitis B virus (HBV) infection. Nevertheless, it is unknown whether HBV infection modifies the clinical presentation of malaria. This study aimed to address this question. Methodology and Findings: An observational study of 636 individuals was performed in Rondonia, western Amazon, Brazil between 2006 and 2007. Active and passive case detections identified Plasmodium infection by field microscopy and nested Polymerase Chain Reaction (PCR). HBV infections were identified by serology and confirmed by real-time PCR. Epidemiological information and plasma cytokine profiles were studied. The data were analyzed using adjusted multinomial logistic regression. Plasmodium-infected individuals with active HBV infection were more likely to be asymptomatic (OR: 120.13, P < 0.0001), present with lower levels of parasitemia and demonstrate a decreased inflammatory cytokine profile. Nevertheless, co-infected individuals presented higher HBV viremia. Plasmodium parasitemia inversely correlated with plasma HBV DNA levels (r=-0.6; P=0.0003). Conclusion: HBV infection diminishes the intensity of malaria infection in individuals from this endemic area. This effect seems related to cytokine balance and control of inflammatory responses. These findings add important insights to the understanding of the factors affecting the clinical outcomes of malaria in endemic regions.
Resumo:
Shallow subsurface layers of gold nanoclusters were formed in polymethylmethacrylate (PMMA) polymer by very low energy (49 eV) gold ion implantation. The ion implantation process was modeled by computer simulation and accurately predicted the layer depth and width. Transmission electron microscopy (TEM) was used to image the buried layer and individual nanoclusters; the layer width was similar to 6-8 nm and the cluster diameter was similar to 5-6 nm. Surface plasmon resonance (SPR) absorption effects were observed by UV-visible spectroscopy. The TEM and SPR results were related to prior measurements of electrical conductivity of Au-doped PMMA, and excellent consistency was found with a model of electrical conductivity in which either at low implantation dose the individual nanoclusters are separated and do not physically touch each other, or at higher implantation dose the nanoclusters touch each other to form a random resistor network (percolation model). (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3231449]
Resumo:
PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.
Resumo:
Fusion cross sections were measured for the exotic proton-halo nucleus (8)B incident on a (58)Ni target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a protonhalo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles. Evidence is presented that the sum of the fusion and breakup yields saturates the total reaction cross section.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.
Resumo:
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling
Resumo:
Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.
Resumo:
Searching lead compounds for new antituberculosis drugs, the activity of synthetic sulfonamides and sulfonyl-hydrazones were assayed for their potential inhibitory activity towards a protein tyrosine phosphatase from Mycobacterium tuberculosis - PtpB. Four sulfonyl-hydrazones N-phenylmaleimide derivatives were active (compounds 14, 15, 19 and 21), and the inhibition of PtpB was found to be competitive with respect to the substrate p-nitrophenyl phosphate. Structure-based molecular docking simulations were performed and indicated that the new inhibitor candidates showed similar binding modes, filling the hydrophobic pocket of the protein by the establishment of van der Waals contacts, thereby contributing significantly to the complex stability.
Resumo:
The title compound, C(16)H(15)N(3)O(2)S, was synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile and o-fluoronitrobenzene. The thiophene and nitrophenyl rings and amino and carbonitrile groups are coplanar with a maximum deviation of 0.046 (2) angstrom and a dihedral angle of 0.92 (6)degrees between the rings. The cyclohepta ring adopts a chair conformation. Intramolecular N-H center dot center dot center dot O and C-H center dot center dot center dot S interactions occur. In the crystal, the molecules form layers that are linked by pi-pi stacking interactions between the thiophene and benzene rings [centroid-centroid distances = 3.7089 (12) and 3.6170 (12) angstrom].
Resumo:
Few studies have prospectively addressed the effects of exercise in the inflammatory activity of patients with coronary artery disease (CAD). We sought to evaluate the consequences of an acute bout of exercise on inflammatory markers and BNP in untrained CAD patients before and after randomization to a training program. 34 CAD patients underwent a 50-min acute exercise session on a cycle-ergometer at 65% peak oxygen uptake before and after blood sampling. They were then randomized to a 4-month chronic exercise program (15 patients) or general lifestyle recommendations (19 patients), undergoing a new acute session of exercise after that. In the overall population, acute exercise caused a significant increase in C-reactive protein [CRP; 1.79 (4.49) vs. 1.94 (4.89) mg/L, P < 0.001], monokine induced by interferon-gamma [Mig; 351 (324) vs. 373 (330) pg/mL, P = 0.027] and vascular adhesion molecule-1 [VCAM-1; 226 (82) vs. 252 (110) pg/mL, P = 0.02]. After 4-months, in exercise-trained patients, there was a significant decrease in the inflammatory response provoked by the acute exercise compared to patients in the control group reflected by a significant decrease in the differences between rest and post-exercise levels of CRP [-0.29 (0.84) mg/L vs. -0.11 (0.21) mg/L, P = 0.05]. Resting BNP was also significantly lower in exercise-trained patients when compared to untrained controls [15.6 (16.2) vs. 9.7 (11.4) pg/mL, P = 0.04 and 19.2 (27.8) vs. 23.2 (27.5) pg/mL, P = 0.76; respectively]. Chronic exercise training might partially reverse the inflammatory response caused by acute exercise in CAD patients. These results suggest that regular exercise is an important nonpharmacological strategy to the improvement in inflammation in CAD patients.
Resumo:
This study was designed to identify perseverative reaching tendencies in children with intellectual disabilities (ID), over a period of 1 year, by using a version of the Piagetian ""A not B"" task modified by Smith, Thelen, Titzer, and McLin (1999). Nine children (4.8 years old at the beginning of the study) with intellectual disabilities (ID) (eight with mild ID; one with moderate ID) were assessed every 3 months for approximately 1 year, totaling four assessments. The results indicate that in a majority of the cases perseveration was resilient, and that the visual system decoupled from the reaching, especially towards the later assessment periods at the end of the year. Across assessment periods variability seemed to increase in each trial (A1 through B2) for reached target. These individuals, vulnerable to distraction and attention and to short-term memory deficits, are easily locked into rigid modes of motor habits. They are susceptible to perseveration while performing simple task contexts that are typically designed for 10- to 12-month-old, normally-developing infants, therefore creating strong confinements to stable, rigid modes of elementary forms of behavior. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, Ti(92)B(8) alloy was processed via rapid solidification (splat-cooling) and then heat-treated at 700 degrees C and 1000 degrees C. A careful microstructural characterization indicated that, after rapid solidification, a very fine two-phase microstructure was produced with no significant saturation of B in alpha/beta Ti. There was no indication of amorphous formation in the rapidly solidified splats. Both alpha Ti and TiB were observed in the microstructures of the splats after heat-treatment at 700 degrees C and 1000 degrees C, confirming the stability of the alpha Ti+TiB two-phase region in this temperature range. (C) 2008 Elsevier Inc. All rights reserved.