975 resultados para Pole inspection
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
Collection : French books before 1601 ; 224.3
Resumo:
The purpose of this manual is to organize, document, and combine Iowa Department of Transportation (Iowa DOT) policies and procedures for bridge inspection practices and post-inspection recommendations so Iowa DOT personnel, local agencies, and consultants will have a readily available resource for their use. Previously, bridge inspection policies and procedures were documented by various means, making it difficult to provide consistent answers to questions regarding bridge inspection topics. This manual is intended to ensure uniformity and document best practices for inspection of Iowa’s bridges, especially as experienced inspection personnel retire.
Resumo:
The Iowa Department of Transportation is responsible for maintaining approximately 3800 bridges throughout the State. Of these bridges approximately 3200 have concrete decks. The remaining bridges have been constructed or repaired with a Portland Cement (P. C.) concrete overlay. Surveys of the overlays have indicated a growing incidence of delaminations and surface distress. The need to replace or repair the overlay may be dictated by the amount of delamination in the deck. Additionally, the concrete bridges are periodically inspected and scheduled for the appropriate rehabilitation. Part of this analysis is an assessment of the amount of delamination present in the deck. The ability to accurately and economically identify delamination in overlays and bridge decks is necessary to cost-effectively evaluate and schedule bridge rehabilitation. There are two conventional methods currently being used to detect delaminations. One is ref erred to as a chain drag method. The other a electro-mechanical sounding method (delamtect). In the chain drag method, the concrete surface is struck using a heavy chain. The inspector then listens to the sound produced as the surface is struck. The delaminated areas produce a dull sound as compared to nondelaminated areas. This procedure has proved to be very time consuming, especially when a number of small areas of delamination are present. With the · electro-mechanical method, the judgement of the inspector has been eliminated. A· device with three basic components, a tapping device, a sonic receiver, and a system of signal interpretation has been developed. This· device is wheeled along the deck and the instrument receives and interprets the acoustic signals generated by the instrument which in turn are reflected through the concrete. A recently developed method of detecting delaminations is infrared thermography. This method of detection is based on the difference in surface temperature which exists between delaminated and nondelaminated concrete under certain atmospheric conditions. The temperature difference can reach 5°C on a very sunny day where dry pavement exists. If clouds are present, or the pavement is wet, then the temperature difference between the delaminated and nondelaminated concrete will not be as great and therefore more difficult to detect. Infrared thermography was used to detect delaminations in 17 concrete bridge decks, 2 P. C. concrete overlays, and 1 section of continuously reinforced concrete pavement (CRCP) in Iowa. Thermography was selected to assess the accuracy, dependability, and potential of the infrared thermographic technique.
Resumo:
Minimizing infiltration of water in pavement structures has long been a priority of pavement designers. Incorporation of subsurface edgedrains is frequently an integral part of an pavement drainage system. In order for such a system to be effective however, it must be properly installed and maintained. With advances in video technology, inspection of edgedrain systems can now be conducted quite efficiently. This report documents the results of 287 video inspections of highway edgedrain systems in 29 states. These inspections were conducted to both demonstrate the capabilities of the technology as well as demonstrating some of the common problems associated with the performance of edgedrain systems. Findings indicated not only that the equipment was quite effective in identifying edgedrain performance concerns, but also how widespread the concerns of edgedrain performance are. Almost one third of the systems inspected had nonfunctional outlets, another third were either found to have non-functional mainlines or the mainlines could not be inspected due to physical obstructions. Only one third of the systems inspected were found to be performing as intended. Recommendations are provided for edgedrain design improvements to facilitate performance of the system and their inspections as well as recommendations to improve quality control during construction. Suggestions are also provided for maintenance procedures to address concerns identified in the inspection process. A Draft Guide Specification For Video Edgedrain Inspection and Acceptance is also provided as an Appendix.
Resumo:
We present a seabed profile estimation and following method for close proximity inspection of 3D underwater structures using autonomous underwater vehicles (AUVs). The presented method is used to determine a path allowing the AUV to pass its sensors over all points of the target structure, which is known as coverage path planning. Our profile following method goes beyond traditional seabed following at a safe altitude and exploits hovering capabilities of recent AUV developments. A range sonar is used to incrementally construct a local probabilistic map representation of the environment and estimates of the local profile are obtained via linear regression. Two behavior-based controllers use these estimates to perform horizontal and vertical profile following. We build upon these tools to address coverage path planning for 3D underwater structures using a (potentially inaccurate) prior map and following cross-section profiles of the target structure. The feasibility of the proposed method is demonstrated using the GIRONA 500 AUV both in simulation using synthetic and real-world bathymetric data and in pool trials
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
This thesis considers nondestructive optical methods for metal surface and subsurface inspection. The main purpose of this thesis was to study some optical methods in order to find out their applicability to industrial measurements. In laboratory testing the simplest light scattering approach, measurement of specular reflectance, was used for surface roughness evaluation. Surface roughness, curvature and finishing process of metal sheets were determined by specular reflectance measurements. Using a fixed angleof incidence, the specular reflectance method might be automated for industrialinspection. For defect detection holographic interferometry and thermography were compared. Using either holographic interferometry or thermography, relativelysmall-size defects in metal plates could be revealed. Holographic techniques have some limitations for industrial measurements. On the contrary, thermography has excellent prospects for on-line inspection, especially with scanning techniques.
Resumo:
Inspections of pleasure boats in Spain can be carried out by collaborating entities of inspection, entities that must be authorized by the Maritime Administration. This authorization allows to perform effective inspections and technical controls of recreational crafts. Recreational crafts are subjected to surveys that are based on the registration list and on the material used in the hull. In addition, required safety equipment of the recreational boat depends on the distance that the recreational boat is authorized to navigate. Following data obtained from inspections of recreational craft, this paper aims to analyze information about hulls within dry and afloat conditions, about the equipment for rescue and safety, and about other nautical equipment; as well as to perform and improve different verifications during the inspections. All this information points to several aspects relevant for the optimization of the inspection process, the ultimate target being increasing efficiency and effectiveness, and ensuring more safety in recreational craft.
Resumo:
Synchronous motors are used mainly in large drives, for example in ship propulsion systems and in steel factories' rolling mills because of their high efficiency, high overload capacity and good performance in the field weakening range. This, however, requires an extremely good torque control system. A fast torque response and a torque accuracy are basic requirements for such a drive. For large power, high dynamic performance drives the commonly known principle of field oriented vector control has been used solely hitherto, but nowadays it is not the only way to implement such a drive. A new control method Direct Torque Control (DTC) has also emerged. The performance of such a high quality torque control as DTC in dynamically demanding industrial applications is mainly based on the accurate estimate of the various flux linkages' space vectors. Nowadays industrial motor control systems are real time applications with restricted calculation capacity. At the same time the control system requires a simple, fast calculable and reasonably accurate motor model. In this work a method to handle these problems in a Direct Torque Controlled (DTC) salient pole synchronous motor drive is proposed. A motor model which combines the induction law based "voltage model" and motor inductance parameters based "current model" is presented. The voltage model operates as a main model and is calculated at a very fast sampling rate (for example 40 kHz). The stator flux linkage calculated via integration from the stator voltages is corrected using the stator flux linkage computed from the current model. The current model acts as a supervisor that prevents only the motor stator flux linkage from drifting erroneous during longer time intervals. At very low speeds the role of the current model is emphasised but, nevertheless, the voltage model always stays the main model. At higher speeds the function of the current model correction is to act as a stabiliser of the control system. The current model contains a set of inductance parameters which must be known. The validation of the current model in steady state is not self evident. It depends on the accuracy of the saturated value of the inductances. Parameter measurement of the motor model where the supply inverter is used as a measurement signal generator is presented. This so called identification run can be performed prior to delivery or during drive commissioning. A derivation method for the inductance models used for the representation of the saturation effects is proposed. The performance of the electrically excited synchronous motor supplied with the DTC inverter is proven with experimental results. It is shown that it is possible to obtain a good static accuracy of the DTC's torque controller for an electrically excited synchronous motor. The dynamic response is fast and a new operation point is achieved without oscillation. The operation is stable throughout the speed range. The modelling of the magnetising inductance saturation is essential and cross saturation has to be considered as well. The effect of cross saturation is very significant. A DTC inverter can be used as a measuring equipment and the parameters needed for the motor model can be defined by the inverter itself. The main advantage is that the parameters defined are measured in similar magnetic operation conditions and no disagreement between the parameters will exist. The inductance models generated are adequate to meet the requirements of dynamically demanding drives.
Resumo:
The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the SR-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the “basic pole pair” in linear-movement transversal-flux switchedreluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis.
Resumo:
To optimize the use of pesticides, several countries have carried out periodic inspections in agricultural sprayers. In Brazil, knowing the conditions of this machinery canguide researches and investments in guidelines for its use and maintenance. The objective of this study was to verify the state of sprayer maintenance used in the North of the state of Paraná, in Brazil. Several sprayer items were evaluated, such as: presence, status and scale of the manometer, status of the hose, status of the anti-drip component, presence of leaks, status of the bar, status of the filters, state of the spraying nozzles and errors in the targeted flow rate. Machines were named as approved when there was no failure in any item evaluated. The factor that caused the biggest level of reprove among the machines was incorrect scale of manometers, which reproved 84.55% of the machines evaluated. Other outstanding factor was the incorrect flow rate in 75.5% of the tested machines. Only one unit was approved from the total of 110 evaluated sprayers.