945 resultados para Plug-ins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

基于捷联惯导系统(INS)与全球定位系统(GPS)定位技术的发展以及机器人导航的需要,本文对INS与GPS的组合导航系统进行了研究。捷联惯导系统与GPS导航各有优缺点,具有互补性,文中将两者结合形成了更加准确可靠的定位系统。本文首先介绍了捷联惯导系统和全球定位系统,并对捷联惯导和GPS的误差作了详细的分析,建立了误差模型。文中应用动力学误差方程建立了九状态INS/GPS综合卡尔曼滤波方程。提出了一种以位置、速度、姿态DCM的误差为状态量,以GPS和INS的位置差作为观测量的INS/GPS组合导航系统的滤波算法,并将该技术应用于机器人的定位导航。仿真实验表明,该算法可有效提高系统导航参数的估计精度。本文分五章对该课题进行了研究。第一章是引言,介绍了课题的研究背景、意义,国内外的研究现状和本文的主要工作;第二章介绍了惯性传感器和GPS接收器的原理和特性;第三章介绍了捷联惯导系统相关的理论知识,包括姿态角的解算,算法具体内容和误差分析,并对捷联惯导系统进行了仿真试验;第四章介绍了Kalman滤波的相关知识并详细介绍了INS/GPS组合导航系统;第五章对INS/GPS组合导航系统的九状态卡尔曼滤波算法进行了仿真,并对试验结果进行了详细的分析。从仿真结果可知,组合导航系统大大的提高了系统的精度,克服了纯惯导系统的缺点。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 The Authors.Caenorhabditis elegans larvae reversibly arrest development in the first larval stage in response to starvation (L1 arrest or L1 diapause). Insulin-like signaling is a critical regulator of L1 arrest. However, the C. elegans genome encodes 40 insulin-like peptides, and it is unknown which peptides participate in nutritional control of L1 development. Work in other contexts has revealed that insulin-like genes can promote development ("agonists") or developmental arrest ("antagonists"), suggesting that such agonists promote L1 development in response to feeding. We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified thirteen candidate agonists and eight candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (. daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists is largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in control of L1 development. Transcriptional regulation of candidate agonists is most significant in the intestine, as if internal nutrient status is a more important influence on transcription than sensory perception. Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 developmental dynamics, though simultaneous disruption of ins-4 and daf-28 increases survival of L1 arrest. Furthermore, overexpression of ins-4, ins-6 or daf-28 alone decreases survival and promotes cell division during starvation. These results suggest extensive functional overlap among insulin-like genes in nutritional control of L1 development while highlighting the role of ins-4, daf-28 and to a lesser extent ins-6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand how a signaling molecule's activities are regulated, we need insight into the processes controlling the dynamic balance between its synthesis and degradation. For the Ins(1,3,4,5,6)P5 signal, this information is woefully inadequate. For example, the only known cytosolic enzyme with the capacity to degrade Ins(1,3,4,5,6)P5 is the tumour-suppressor PTEN [J.J. Caffrey, T. Darden, M.R. Wenk, S.B. Shears, FEBS Lett. 499 (2001) 6 ], but the biological relevance has been questioned by others [E.A. Orchiston, D. Bennett, N.R. Leslie, R.G. Clarke, L. Winward, C.P. Downes, S.T. Safrany, J. Biol. Chem. 279 (2004) 1116 ]. The current study emphasizes the role of physiological levels of PTEN in Ins(1,3,4,5,6)P5 homeostasis. We employed two cell models. First, we used a human U87MG glioblastoma PTEN-null cell line that hosts an ecdysone-inducible PTEN expression system. Second, the human H1299 bronchial cell line, in which PTEN is hypomorphic due to promoter methylation, has been stably transfected with physiologically relevant levels of PTEN. In both models, a novel consequence of PTEN expression was to increase Ins(1,3,4,5,6)P5 pool size by 30-40% (p<0.01); this response was wortmannin-insensitive and, therefore, independent of the PtdIns 3-kinase pathway. In U87MG cells, induction of the G129R catalytically inactive PTEN mutant did not affect Ins(1,3,4,5,6)P(5) levels. PTEN induction did not alter the expression of enzymes participating in Ins(1,3,4,5,6)P5 synthesis. Another effect of PTEN expression in U87MG cells was to decrease InsP6 levels by 13% (p<0.02). The InsP6-phosphatase, MIPP, may be responsible for the latter effect; we show that recombinant human MIPP dephosphorylates InsP6 to D/L-Ins(1,2,4,5,6)P5, levels of which increased 60% (p<0.05) following PTEN expression in U87MG cells. Overall, our data add higher inositol phosphates to the list of important cellular regulators [Y. Huang, R.P. Wernyj, D.D. Norton, P. Precht, M.C. Seminario, R.L. Wange, Oncogene, 24 (2005) 3819 ] the levels of which are modulated by expression of the highly pleiotropic PTEN protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ins(1,4,5,6)P4, a biologically active cell constituent, was recently advocated as a substrate of human Ins(3,4,5,6)P4 1-kinase (hITPK1), because stereochemical factors were believed relatively unimportant to specificity [Miller, G.J. Wilson, M.P. Majerus, P.W. and Hurley, J.H. (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-triphosphate 5/6-kinase. Mol. Cell. 18, 201-212]. Contrarily, we provide three examples of hITPK1 stereospecificity. hITPK1 phosphorylates only the 1-hydroxyl of both Ins(3,5,6)P3 and the meso-compound, Ins(4,5,6)P3. Moreover, hITPK1 has >13,000-fold preference for Ins(3,4,5,6)P4 over its enantiomer, Ins(1,4,5,6)P4. The biological significance of hITPK1 being stereospecific, and not physiologically phosphorylating Ins(1,4,5,6)P4, is reinforced by our demonstrating that Ins(1,4,5,6)P4 is phosphorylated (K(m) = 0.18 microM) by inositolphosphate-multikinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plug-assisted thermoforming produces a wide range of polymer products through a combination of deformation by air pressure and contact with tool surfaces. In this paper the role of tool/sheet contact in determining the process output is investigated. A combination of thermoforming, friction and heat transfer tests were carried out on common tool and sheet materials. The results show that the typical friction coefficients for the material combinations are within the range 0.1 to 0.3, but the values rise sharply on approaching thermoforming temperatures. Thermal imaging tests demonstrate that all of the plug materials significantly cool the heated sheet on contact, even over very short periods of time. The temperature of the plug is very important. At low plug temperatures heat transfer effects predominate, whereas at high plug temperatures friction effects predominate. A plug temperature of approximately 100oC balances these effects and creates the most effective material distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoforming processes generally employ sheet temperature monitoring as the primary means of process control. In this paper the development of an alternative system that monitors plug force is described. Tests using a prototype device have shown that the force record over a forming cycle creates a unique map of the process operation. Key process features such as the sheet modulus, sheet sag and the timing of the process stages may be readily observed, and the effects of changes in all of the major processing parameters are easily distinguished. Continuous, cycle-to-cycle tests show that the output is consistent and repeatable over a longer time frame, providing the opportunity for development of an on-line process control system. Further testing of the system is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation has been carried out into the effects of changes in plug design on the wall thickness distribution of thermoformed products. Plugs were machined with a series of geometrical variations and their effects on the process were measured. The overall results show that the plug has a crucial role in controlling the wall thickness distribution in thermoforming. Larger plugs tend to distribute more material to the base of the product, but the introduction of a small sidewall taper, base radius, or a reduction in plug diameter tend to lead to more balanced distributions. However, larger changes in any of the variables tend to destroy these benefits. It has also been demonstrated that the frictional and thermal properties of the plug are important in determining the deformation response of the sheet material. There is a clear evidence of slip in the sheet during plug contact and, although the cooling effect of the plug appears to be minimal, cooling in the highly deformed regions away from the plug appears to be a significant factor.

Relevância:

20.00% 20.00%

Publicador: