395 resultados para Plucked strings
Resumo:
We apply a physical principle, previously used to eliminate ambiguities in quantum corrections to the two-dimensional kink, to the case of spinning strings moving in AdS4×CP3, thought of as another kind of two-dimensional soliton. We find that this eliminates the ambiguities and selects the result compatible with AdS/CFT, providing a solid foundation for one of the previous calculations, which found agreement. The method can be applied to other classical string «solitons.» © 2013 World Scientific Publishing Company.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although parrots share with corvids and primates many of the traits believed to be associated with advanced cognitive processing, knowledge of parrot cognition is still limited to a few species, none of which are Neotropical. Here we examine the ability of three Neotropical parrot species (Blue-Fronted Amazons, Hyacinth and Lear`s macaws) to spontaneously solve a novel physical problem: the string-pulling test. The ability to pull up a string to obtain out-of-reach food has been often considered a cognitively complex task, as it requires the use of a sequence of actions never previously assembled, along with the ability to continuously monitor string, food and certain body movements. We presented subjects with pulling tasks where we varied the spatial relationship between the strings, the presence of a reward and the physical contact between the string and reward to determine whether (1) string-pulling is goal-oriented in these parrots, (2) whether the string is recognized as a means to obtain the reward and (3) whether subjects can visually determine the continuity between the string and the reward, selecting only those strings for which no physical gaps between string and reward were present. Our results show that some individuals of all species were able to use the string as a means to reach a specific goal, in this case, the retrieval of the food treat. Also, subjects from both macaw species were able to visually determine the presence of physical continuity between the string and reward, making their choices consistently with the recognition that no gaps should be present between the string and the reward. Our findings highlight the potential of this taxonomic group for the understanding of the underpinnings of cognition in evolutionarily distant groups such as birds and primates.
Resumo:
Herein, we report a technically simple method for isolation and culture of human follicular melanocytes based on explant cultures of epilated hair follicles. This technique does not require any surgical intervention and allows the isolation and cultivation of follicular melanocytes from a comparatively small amount of raw material. Generally, 30-60 human anagen hair follicles have been plucked from the scalp of healthy donors and cultivated under low oxygen pressure (5%). After a short period of time cells of various types were growing out from the outer root sheath (ORS) of the hair follicles. Under the selected culture conditions, most of the cells other than melanocytes have been eliminated and a nearly 100% pure population of melanocytes has been achieved, as confirmed by immunohistochemical analyses for melanocyte-specific markers, for example, Tyrosinase-1, S-100 and premelanosomal antigens. These melanocytes derived from the ORS were proliferating for up to 2 months.
Resumo:
We solve two inverse spectral problems for star graphs of Stieltjes strings with Dirichlet and Neumann boundary conditions, respectively, at a selected vertex called root. The root is either the central vertex or, in the more challenging problem, a pendant vertex of the star graph. At all other pendant vertices Dirichlet conditions are imposed; at the central vertex, at which a mass may be placed, continuity and Kirchhoff conditions are assumed. We derive conditions on two sets of real numbers to be the spectra of the above Dirichlet and Neumann problems. Our solution for the inverse problems is constructive: we establish algorithms to recover the mass distribution on the star graph (i.e. the point masses and lengths of subintervals between them) from these two spectra and from the lengths of the separate strings. If the root is a pendant vertex, the two spectra uniquely determine the parameters on the main string (i.e. the string incident to the root) if the length of the main string is known. The mass distribution on the other edges need not be unique; the reason for this is the non-uniqueness caused by the non-strict interlacing of the given data in the case when the root is the central vertex. Finally, we relate of our results to tree-patterned matrix inverse problems.
Resumo:
The quantum dimer model on the square lattice is a U(1) gauge theory that addresses aspects of the physics of high-Tc superconductors. Using a quantum Monte Carlo method, we show that the theory exists in a confining columnar valence bond solid phase. The interfaces separating distinct columnar phases display plaquette order, which, however, is not realized as a bulk phase. Static “electric” charges are confined by flux tubes that consist of multiple strands, each carrying a fractionalized flux ¼. A soft pseudo-Goldstone mode (which becomes exactly massless at the Rokhsar-Kivelson point) extends deep into the columnar phase, with potential implications for high-Tc physics.
Resumo:
Multizinc finger peptides are likely to reach increased prominence in the search for the “ideal” designer transcription factor for in vivo applications such as gene therapy. However, for these treatments to be effective and safe, the peptides must bind with high affinity and, more importantly, with great specificity. Our previous research has shown that zinc finger arrays can be made to bind 18 bp of DNA with picomolar affinity, but also has suggested that arrays of fingers also may bind tightly to related sequences. This work addresses the question of zinc finger DNA binding specificity. We show that by changing the way in which zinc finger arrays are constructed—by linking three two-finger domains rather than two three-finger units—far greater target specificity can be achieved through increased discrimination against mutated or closely related sequences. These new peptides have the added capability of being able to span two short gaps of unbound DNA, although still binding with picomolar affinity to their target sites. We believe that this new method of constructing zinc finger arrays will offer greater efficacy in the fields of gene therapy and in the production of transgenic organisms than previously reported zinc finger arrays.