981 resultados para Platinum-based catalyst
Resumo:
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Iron is one of the most common elements in the earth’s crust and thus its availability and economic viability far exceed that of metals commonly used in catalysis. Also the toxicity of iron is miniscule, compared to the likes of platinum and nickel, making it very desirable as a catalyst. Despite this, prior to the 21st century, the applicability of iron in catalysis was not thoroughly investigated, as it was considered to be inefficient and unselective in desired transformations. In this doctoral thesis, the application of iron catalysis in combination with organosilicon reagents for transformations of carbonyl compounds has been investigated together with insights into iron catalyzed chlorination of silanes and silanols. In the first part of the thesis, the synthetic application of iron(III)-catalyzed chlorination of silanes (Si-H) and the monochlorination of silanes (SiH2) using acetyl chloride as the chlorine source is described. The reactions proceed under ambient conditions, although some compounds need to be protected from excess moisture. In addition, the mechanism and kinetics of the chlorination reaction are briefly adressed. In the second part of this thesis a versatile methodology for transformation of carbonyl compounds into three different compound classes by changing the conditions and amounts of reagents is discussed. One pot reductive benzylation, reductive halogenation and reductive etherification of ketones and aldehydes using silanes as the reducing agent, halide source or cocatalyst, were investigated. Also the reaction kinetics and mechanism of the reductive halogenation of acetophenone are briefly discussed.
Resumo:
Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated similar to 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.
Resumo:
The complex of Brookhart Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6- diisopropylphenyl)-acenaphthenediimine) has been characterized after impregnation on silica (S1) and MAO-modified silicas (4.0, 8.0 and 23.0 wts.% Al/SiO2 called S2, S3 and S4, respectively). The treatment of these heterogeneous systems with MAO produces some active catalysts for the polymerization of the ethylene. A high catalytic activity has been gotten while using the system supported 1/S3 (196 kg of PE/mol[Ni].h.atm; toluene, Al/Ni = 1000, 30ºC, 60 min and atmospheric pressure of ethylene). The effects of polymerization conditions have been tested with the catalyst supported in S2 and the best catalytic activity has been gotten with solvent hexane, MAO as cocatalyst, molar ratio Al/Ni of 1000 and to the temperature of 30°C (285 kg of PE/mol[Ni].h.atm). When the reaction has been driven according to the in situ methodology, the activity practically doubled and polymers showed some similar properties. Polymers products by the supported catalysts showed the absence of melting fusion, results similar to those gotten with the homogeneous systems by DSC analysis. But then, polymers gotten with the transplanted system present according to the GPC’s curves the polydispersity (MwD) varies between 1.7 and 7.0. A polyethylene blend (BPE/LPE) was prepared using the complex Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {TpMs*}TiCl3 (2) (TpMs* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)) supported in situ on MAO-modified silica (4.0 wts. -% Al/SiO2, S2). Reactions of polymerization of ethylene have been executed in the toluene in two different temperatures (0 and 30°C), varying the molars fraction of nickel (xNi), and using MAO as external cocatalyst. To all temperatures, the activities show a linear variation tendency with xNi and indicate the absence of the effect synergic between the species of nickel and the titanium. The maximum of activity have been found at 0°C. The melting temperature for the blends of polyethylene produced at 0 °C decrease whereas xNi increases indicating a good compatibility between phases of the polyethylene gotten with the two catalysts. The melting temperature for the blends of polyethylene showed be depend on the order according to which catalysts have been supported on the MAO-modified silica. The initial immobilization of 1 on the support (2/1/S2) product of polymers with a melting temperature (Tm) lower to the one of the polymer gotten when the titanium has been supported inicially (1/2/S2). The observation of polyethylenes gotten with the two systems (2/1/S2 and 1/2/S2) by scanning electron microscopy (SEM) showed the spherical polymer formation showing that the spherical morphology of the support to been reproduced. Are described the synthesis, the characterization and the catalytic properties for the oligomerization of the ethylene of four organometallics compounds of CrIII with ligands ([bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine] chromium (III) chloride (3a), [bis[2-(3,5- dimethyl-l-pyrazolyl)ethyl]benzylamine] chromium (III) chloride (3b), [bis[2-(3,5-dimethyl-lpyrazolyl) ethyl]ether] chromiun(III)chloride (3c), [bis[2-(3-phenyl-lpyrazolyl) ethyl]ether]chromiun(III)chloride (3d)). In relation of the oligomerization, at exception made of the compounds 3a, all complex of the chromium showed be active after activation with MAO and the TOF gotten have one effect differentiated to those formed with CrCl3(thf)3. The coordination of a tridentate ligand on the metallic center doesn't provoke any considerable changes on the formation of the C4 and C6, but the amount of C8 are decrease and the C10 and C12+ have increased. The Polymers produced by the catalyst 3a to 3 and 20 bar of ethylene have, according to analyses by DSC, the temperatures of fusion of 133,8 and 136ºC respectively. It indicates that in the two cases the production of high density polyethylene. The molar mass, gotten by GPC, is 46647 g/mols with MwD = 2,4 (3 bar). The system 3c/MAO showed values of TOF, activity and selectivity to different α-olefins according to the pressure of ethylene uses. Himself that shown a big sensibility to the concentration of ethylene solubilized.
Resumo:
This paper provides information about the synthesis and mechanical properties of geopolymers based on fluid catalytic cracking catalyst residue (FCC). FCC was alkali activated with solutions containing different SiO2/Na2O ratios. The microstructure and mechanical properties were analysed by using several instrumental techniques. FCC geopolymers are mechanically stable, yielding compressive strength about 68 MPa when mortars are cured at 65 degrees C during 3 days. The results confirm the viability of producing geopolymers based on FCC. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work describes the construction and application of a biomimetic sensor for paracetamol determination in different samples. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with FeTPyPz. The best performance of the sensor in 0.1 mol L-1 acetate buffer was at pH 3.6. Under these conditions, an oxidation potential of paracetamol was observed at 445 mV vs. Ag vertical bar AgCl. The sensor presented a linear response range between 4.0 and 420 mu mol L-1, a sensitivity of 46.015 mA L mol(-1) cm(-2), quantification and detection limits of 4.0 mu mol L-1 and 1.2 mu mol L-1, respectively. A detailed investigation about its electrochemical behavior and selectivity was carried out. The results suggested that FeTPyPz presents catalytic properties similar to P450 enzyme for paracetamol oxidation. Finally, the sensor was applied for paracetamol determination in commercial drugs and for the monitoring of its degradation in an electrochemical batch reactor effluent.
Resumo:
A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.
Resumo:
Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Although electrochemical oxidation of simple organic molecules on metal catalysts is the basic ingredient of fuel cells, which have great technological potential as a renewable source of electrical energy, the detailed reaction mechanisms are in most cases not completely understood. Here, we investigate the ethanol-platinum interface in acidic aqueous solution using infrared-visible sum frequency generation (SFG) spectroscopy and theoretical calculations of vibrational spectra in order to identify the intermediates present during the electro-oxidation of ethanol. The complex vibrational spectrum in the fingerprint region imply on the coexistence of several adsorbates. Based on spectra in ultra-high-vacuum (UHV) and electrochemical environment from the literature and our density functional theory (DFT) calculations of vibrational spectra, new adsorbed intermediates, never before observed with conventional infrared (IR) spectroscopy, are proposed here: g2-acetaldehyde, g2-acetyl, ethylidyne, monodentate acetate, methoxy, tertiary methanol derivative, COH residue, g2-formaldehyde, mono and bidentate formate, CH3 and CH2 residues. In addition, we present new evidences for an ethoxy intermediate, a secondary ethanol derivative and an acetyl species, and we confirm the presence of previously observed adsorbates: a tertiary ethanol derivative, bidentate acetate, and COad. These results indicate that the platinum surface is much more reactive, and the reaction mechanism for ethanol electro-oxidation is considerably more complex than previously considered. This might be also true for many other molecule-catalyst systems.
Resumo:
Supported metals are traditionally prepared by impregnating a support material with the metal precursor solution, followed by reduction in hydrogen at elevated temperatures. In this study, a polymeric support has been considered. Polypyrrole (PPy) has been chemically synthesized using FeCl3 as a doping agent, and it has been impregnated with a H2PtCl6 solution to prepare a catalyst precursor. The restricted thermal stability of polypyrrole does not allow using the traditional reduction in hydrogen at elevated temperature, and chemical reduction under mild conditions using sodium borohydride implies environmental concerns. Therefore, cold RF plasma has been considered an environmentally friendly alternative. Ar plasma leads to a more effective reduction of platinum ions in the chloroplatinic complex anchored onto the polypyrrole chain after impregnation than reduction with sodium borohydride, as has been evidenced by XPS. The increase of RF power enhanced the effectiveness of the Ar plasma treatment. A homogeneous distribution of platinum nanoparticles has been observed by TEM after the reduction treatment with plasma. The Pt/polypyrrol catalyst reduced by Ar plasma at 200 watts effectively catalyzed the aqueous reduction of nitrates with H2 to yield N2, with a very low selectivity to undesired nitrites and ammonium by-products.
Resumo:
International audience