952 resultados para Platinum electrode


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A beta-alumina de sódio é uma cerâmica condutora de íons Na+ utilizada como eletrólito sólido em baterias de sódio para armazenamento de energias intermitentes como energia solar e eólica. Devido ao alto teor de sódio, esse material é instável a altas temperaturas, podendo sofrer variações de composição durante a etapa de sinterização convencional que utiliza altas temperaturas por longos períodos de tempo. A sinterização flash é uma técnica de sinterização ativada por corrente elétrica que proporciona a densificação de compactos cerâmicos em poucos segundos, a temperaturas notavelmente mais baixas que as convencionais. Uma vez obrigatória a passagem de corrente elétrica através da amostra, a sinterização flash de qualquer material condutor parece bastante razoável. Não obstante, até o presente momento a maioria dos trabalhos publicados sobre o assunto aborda apenas condutores de vacância de oxigênio ou semicondutores, materiais compatíveis com eletrodos de platina (Pt). Nesse trabalho a sinterização flash de um condutor catiônico foi estudada utilizando-se a beta-alumina como material modelo. A beta-alumina foi sintetizada pelo método dos precursores poliméricos, caracterizada e então submetida à sinterização flash. O material de eletrodo padrão (platina) provou ser um eletrodo bloqueador em contato com a beta-alumina. O sucesso da sinterização flash foi determinado pela troca do material de eletrodo por prata (Ag), o que possibilitou uma reação eletroquímica reversível nas interfaces eletrodo-cerâmica e possibilitou a obtenção de um material densificado com morfologia e composição química homogêneas. Devido à metaestabilidade da beta-alumina, a atmosfera dos experimentos precisou ser alterada para manter a integridade desse material rico em um metal alcalino (Na+). A sinterização flash de um condutor catiônico é apresentada pela primeira vez na literatura e ressalta a importância da reação de eletrodo, que é um fator limitante para o sucesso da sinterização flash e precisa ser estudada e adaptada para cada tipo de material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this research was to investigate the oxidation of organic compounds in molten alkali metal hydroxides containing manganates. It has been shown that controlled oxidation can be readily achieved with high specificity to give products in high yield with very short reaction times. The concurrent changes in the melt were monitored using a vibrating platinum indicator electrode with a quazi-reference electrode which was successfully developed for use in molten (Na-K)OH eutectic at 523K. Henry's Law constants for water in the molten eutectic system (Na-K)OH have been measured and used to calculate the water concentration in the melt. The electrochemistry of manganates in molten (Na-K)OH eutectic at 523K has been studied using the vibrating platinum electrode, and the existence of the species Mn(II), Mn(II!), Mn(IV), Mn(V) and Mn(VI) in such melts has been investigated at various water concentrations. The half-wave potentials of the voltammetric waves were measured versus the cathodic limit of the melt. The stability of Mn(V) or Mn(VI) in the melt was achieved by varying the water concentration. A range of organic chemicals has been passed through molten (Na-K)OH at 523K and the reactions of these chemicals with the melt have been studied. The same organics were then passed through molten (Na-K)OH containing stabilized Mn(V) or Mn{VI) without violent reaction. Methanol, allyl alcohol, propane 1, 2 diol, I-heptene and acetone were oxidized by Mn(V) and Mn(VI). Ethanol was only oxidized by Mn(VI), isopropanol and benzyl alcohol were only oxidized by Mn(V). Npropanol, butanol, 2 methyl propan-2-ol, n-hexane, n-heptane toluene and cyclohexane were unchanged by both Mn(V) and Mn(VI). Detailed experiments have been performed on the reactions of ethanol, iso-propanol and methanol in molten (Na-K)OH containing stabilized Mrt(V) or Mn(VI), and reaction mechanisms have been postulated. Ethanol and iso-propanol were oxidized to acetaldehyde and acetone respectively with a potential for useful chemical process. The oxidation of methanol could be developed as a basis for an industrial methanol disposal process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, titanium nitride which shows exceptional stability, extreme corrosion resistance, good electronic conductivity and adhesion behaviour is used to support platinum particles and then used for methanol oxidation in an alkaline medium. The catalyst shows very good CO tolerance for the electrochemical oxidation of methanol. In situ infrared spectroelectrochemical data show the remarkable ability of TiN to decompose water at low over potentials leading to -OH type functional groups on its surface which in turn help in alleviating the carbon monoxide poisoning associated with methanol oxidation. TiN supported catalysts are found to be very good in terms of long term stability, exchange current density and stable currents at low over voltages. Supporting evidence from X-ray photoelectron spectroscopic data and cyclic voltammetry clearly demonstrates the usefulness of TiN supported Pt catalysts for efficient methanol oxidation in alkaline media.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO(2) photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm(2) leading to a cell efficiency of 6.50% which is comparable to that of Platinum. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoclusters of Pt were electrochemically deposited on a conducting polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT), which was also electrochemically deposited on carbon paper current collector. PEDOT facilitated uniform distribution of Pt nanoclusters, when compared with Pt electrodeposition on bare carbon paper substrate. Spectroscopy data indicated absence of any interaction between PEDOT and Pt. The electrochemically active surface area as measured from carbon monoxide adsorption followed by its oxidation was several times greater for Pt-PEDOT/C electrode in comparison with Pt/C electrode. The catalytic activity of Pt-PEDOT/C electrode for electrooxidation of formic acid was significantly greater than that of Pt/C electrode. Amperometry data suggested that the electrodes were stable for continuous oxidation of HCOOH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We firstly reported a novel polymer matrix fabricated by type I collagen and polymers, and this matrix can be used as nanoreactors for electrodepositing platinum nanoclusters (PNCs). The type I collagen film has a significant effect on the growth of PNCs. The size of the platinum nanoparticles could be readily tuned by adjusting deposition time, potential and the concentration of electrolyte, which have been verified by field-emitted scanning electron microscopy (FE-SEM). Furthermore, cyclic voltammetry (CV) has demonstrated that the as-prepared PNCs can catalyze methanol directly with higher activity than that prepared on PSS/PDDA film, and with better tolerance to poisoning than the commercial E-TEK catalyst. The collagen-polymer matrix can be used as a general reactor to electrodeposit other metal nanostructures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abnormal IR spectra of CO adsorbed at the surface of glass carbon electrode modified with polypyrrole film with Pt microparticles are reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A conducting platinum cluster compound K1.64Pt(C2O4)(2) was electrochemically synthesized on a glassy carbon electrode through the electrooxidation of K2Pt(C2O4)(2) in an aqueous medium using single potential step and cyclic voltammetry methods. The precursor K2Pt(C2O4)(2) was prepared by a ligand exchange reaction between C2O42- and PtCl42-. During single potential step experiments, the electrolytic current corresponding to the oxidation of K2Pt(C2O4)(2) increased dramatically after a sharp decrease at the beginning (due to the formation of conducting K1.64Pt(C2O4)(2) on the surface of the working electrode). Two kinds of mechanism account for the current transients at the different applied potentials. Cyclic voltammetry was conducted with K1.64Pt(C2O4)(2) on the surface of the working electrode and a steady-state diffusion current was observed. Since the material grew in a fibrous manner, each conducting fiber which was in contact with the electrode could serve as an ultramicroelectrode. The behavior of the working electrode was thus changed from a plain to an ultramicroelectrode array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.