959 resultados para Plastics Biodegradation
Resumo:
This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aimed to assess the aerobic biodegradation of butanol/gasoline, blends (5; 10; 15 and 20% v/v), being the latter compared to the ethanol/gasoline blend (20% v/v). Two experimental techniques were employed, namely the respirometric method and the redox indicator DCPIP test. in the former, experiments simulating the contamination of natural environments (addition of 50 mL of fuel kg(-1) of soil from a non-contaminated site and 20 mL of fuel L(-1) of water from a river) were carried out in biometer flasks (250 mL), used to measure the microbial CO(2) production. The DCPIP test assessed the capability of four inocula to biodegrade the blends of 20%. The addition of butanol at different concentrations enhanced the biodegradation of gasoline in soil. However, no practical gains were observed for concentrations of butanol above 10%. Ethanol showed to have a much faster biodegradation rate than butanol, particularly in water, and the following order of biodegradability was found: ethanol > butanol > gasoline. The addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and water matrices. Furthermore, results suggest that, in soil, butanol better enhanced the biodegradation of gasoline than ethanol. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work is aimed to assess the aerobic biodegradation of biodiesel/diesel blends (0, 2, 5, 20 and 100%, v/v) by Candida viswanathii. The biodegradation potential of the inoculum was assessed with the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test and with respirometric experiment in biometer flasks (250 mL) used to measure the microbial CO(2) production. In the latter, the inoculum was added to a contaminated soil with the blends (addition of 50 mL of fuel/Kg of soil from a non-contaminated site). C. viswanathii was able to increase significantly (approximately 50% in terms of CO(2) production) the biodegradation in soil of biodiesel/diesel blends and neat biodiesel since it preferable biodegrades biodiesel. Without inoculum the biodegradation of diesel oil was higher than biodiesel and blends (47.3, 51.1, 5.7 and 22.1% in terms of CO(2) production by B2, B5, B20 and B100, respectively) presumably due to the presence of the antioxidant terc-butyl-hydroquinone (TBHQ) in the biodiesel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aims at the production of panels made from industrial waste -thermoplastic (Polypropylene - PP; Polyethylene - PE and Acrylonitrile Butadiene Styrene - ABS) reinforced with agro-industrial waste - pupunha palm waste (shells and sheaths). The properties of the panels were evaluated: density, thickness swelling, water absorption and moisture content. It was used the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. The best results in physical tests were treatments 1 (100% waste plastic), 6 (60% plastic waste and 40% waste of pupunha) and 7 (70% waste plastic and 30% waste of pupunha). The best results in the mechanical tests were treatments 3 (30% de residuos plasticos e 70% de residuos da pupunha), 4 (40% de residuos plasticos c 60% de residuos da pupunha) and 5 (50% de residuos plasticos e 50% de residuos da pupunha). For mechanical tests it was concluded that the results of modulus of rupture and of modulus of elasticity the best treatments were those with more fibers. In the tensile tests perpendicular to the surface, it is clear that using more waste plastics leads to the best results. It was concluded that the waste can be used as raw material for the production of alternative materials mainly in civil construction and furniture industries, and it can be employed in urban or rural environment, given the concept of eco-efficient products.