808 resultados para Plastic laminates
Role of silicon in resisting subsurface plastic deformation in tribology of aluminium-silicon alloys
Resumo:
Silicon particles standing proud on aluminium-silicon alloy surfaces provide protection in tribology. Permanent sinking of such particles into the matrix under load can be deleterious. The mechanical response of the alloy to nano-indentation of single silicon particles embedded in the matrix is explored. A nominal critical pressure required to plastically deform the matrix to permanently embed the particle is determined experimentally. Within a framework suggested by two-dimensional models of plastic response to indentation, a probable correlation is established between the normal mean pressure required to cause permanent sinking of silicon particles and a factor which relates the relevant particle dimensions.
Resumo:
The change in extension-twist Coupling due to delamination in antisymmetric laminates is experimentally measured. Experimental results are compared with the results from analytical expression existing in literature and finite element analysis. The application of the Macro-Fiber Composite (MFC) developed at the NASA Langley Research Center for sensing the delamination in the laminates is investigated. While many applications have been reported in the literature using the MFC as an actuator, here its use as a twist sensor has been studied. The real-life application envisaged is structural health monitoring of laminated composite flexbeams taking advantage of the symmetry in the structure. Apart from the defect detection under symmetric conditions, other methods of health monitoring for the same structure are reported for further validation. Results show that MFC works well as a sensor.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.
Resumo:
This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.
Resumo:
A general three-dimensional solution is presented for statics and dynamics of plates, homogeneous or laminated, of orthotropic materials. The solution is in series form. Using parts of the general solution a variety of problems, especially of rectangular configurations, can be solved. As Mindlin's approximate analysis for vibration of thick plates is often adequate for specific practical purposes, a general solution for Mindlin's analysis is also given.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al–Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz.,continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.
Resumo:
Ionic conductivity and other physico-chemical properties of a soft matter composite electrolyte comprising of a polymer-sodium salt complex and a non-ionic plastic crystal are discussed here. The electrolyte under discussion comprises of polyethyleneoxide (PEO)-sodium triflate (NaCF3SO3) and succinonitrile (SN). Addition of SN to PEO-NaCF3SO3 resulted in significant enhancement in ionic conductivity. At 50% SN concentration (with respect to weight of polymer), the polymer-plastic composite electrolyte room temperature (= 25 degrees C) ionic conductivity was similar to 1.1 x 10(-4) Omega(-1) cm(-1), approximately 45 times higher than PEO-NaCF3SO3. Observations from ac-impedance spectroscopy along with X-ray diffraction, differential scanning calorimetry and Fourier transform inrared spectroscopy strongly suggest the enhancement in the composite is ionicconductivity due to enhanced ion mobility via decrease in crystallinity of PEO. The free standing composite polymer-plastic electrolytes were more compliable than PEO-NaCF3SO3 thus exhibiting no detrimental effects of succinonitrile addition on the mechanical stability of PEO-NaCF3SO3. We propose that the exploratory PEO-NaCF3SO3-SN system.discussed here will eventually be developed as a prototype electrolyte.for sodium-sulfur batteries capable of operating at ambient and.sub-ambient conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A method has been developed for immobilisation of antisera on fresh plastic tubes through an immunochemical bridge. This type of immobilisation has been shown to be more consistent than direct adsorption on plastic. Such immunochemically coated antisera on plastic tube has been used in the development of a noncentrifugation radioimmunoassay. This assay system has been found to be technically as sound as the conventional method.
Resumo:
A new elasto-plastic cracking constitutive model for reinforced concrete is presented. The nonlinear effects considered cover almost all the nonlinearities exhibited by reinforced concrete under short term monotonic loading. They include concrete cracking in tension, plasticity in compression, aggregate interlock, tension softening, elasto-plastic behavior of steel, bond-slip between concrete, and steel reinforcement and tension stiffening. A new procedure for incorporating bondslip in smeared steel elements is described. A modified Huber-Hencky-Mises failure criterion for plastic deformation of concrete, which fits the experimental results under biaxial stresses better, is proposed. Multiple cracking at Gauss points and their opening and closing are considered. Matrix expressions are developed and are incorporated in a nonlinear finite element program. After the objectivity of the model is demonstrated, the model is used to analyze two different types of problems: one, a set of four shear panels, and the other, a reinforced concrete beam without shear reinforcement. The results of the analysis agree favorably with the experimental results.
Resumo:
A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.
Resumo:
Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.
Resumo:
The use of appropriate finite elements in different regions of a stressed solid can be expected to be economical in computing its stress response. This concept is exploited here in studying stresses near free edges in laminated coupons. The well known free edge problem of [0/90], symmetric laminate is considered to illustrate the application of the concept. The laminate is modelled as a combination of three distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the two regions. Significant reduction in the problem size and hence in the computational time and cost have been achieved at almost no loss of accuracy.