985 resultados para Plasma electrolytic oxidation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uniform growth of copper oxide nanowires on the top of copper plate has been investigated during the exposure to radiofrequency plasma discharge in respect to plasma properties and its localization. The copper samples of 10 mm radius and 1 mm in thickness were exposed to argon-oxygen plasma created at discharge power of 150 W. After 10 min, almost uniform growth of nanowires was achieved over large surface. There were significant distortions in nanowire length and shape near the edges. Based on the experimental results, we developed a theoretical model, which took into account a balance in heat released at the flow of the current to the nanowire and rejected from the nanowire. This model established a dependence of the maximal length of the nanowire at dependence on the plasma parameters, where the limiting factor for nanowire growth and distortions in distribution are ballistic effects of ions and their local fluxes. In contrast, the plasma heating by potential interactions of species has very little influence on the length and smaller deviations in flux are allowed for uniformity of growth

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adriamycin (Doxorubicin) stimulates NADH oxidase activity in liver plasma membrane, but does not cause NADH oxidase activity to appear where it is not initially present, as in erythrocyte membrane. NADH dehydrogenase from rat liver and erythrocyte plasma membranes shows similar adriamycin effects with other electron acceptors. Both NADH ferricyanide reductase and vanadate-stimulated NADH oxidation are inhibited by adriamycin, as is a cyanide insensitive ascorbate oxidase activity, whereas NADH cytochrome c reductase is not affected. The effects may contribute to the growth inhibitory (control) and/or deleterious effects of adriamycin. It is clear that adriamycin effects on the plasma membrane dehydrogenase involve more than a simple catalysis of superoxide formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to the structural flexibility, uncomplicated processing and manufacturing capabilities, plasma polymers are the subject of active academic as well as industrial research. Polymer thin films prepared from non-synthetic monomers combine desirable optical and physical properties with biocompatibility and environmental sustainability. However, the ultimate expediency and implementation of such materials will dependent on the stability of these properties under varied environmental conditions. Polyterpenol thin films were manufactured at different deposition powers. Under ambient conditions, the bulk of ageing occurred within first 150h after deposition and was attributed to oxidation and volumetric relaxation. Films observed for further 12 months showed no significant changes in thickness or refractive index. Thermal degradation behaviour indicated thermal stability increased for the films manufactured at higher RF powers. Annealing the films to 405°C resulted in full degradation, with retention between 0.29 and 0.99%, indicating films' potential as sacrificial material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoprotein isolated from sheep plasma was chemically modified, and the effect of chemical modification on biological activities and immunological cross reactions has been studied. The removal of sialic acid resulted in a change in the “overall conformation” of the glycoprotein as evidenced by a decrease in viscosity of the glycoprotein solution and an increased susceptibility of the glycoprotein to proteolytic enzymes. Sialic acid-free glycoprotein no longer inhibited the tryptic activity or prolonged the clotting time of plasma. However, it could react with the antiserum to sheep plasma glycoprotein. The periodate oxidation of sheep plasma glycoprotein resulted in a complete loss of inhibition of trypsin activity, prolongation of plasma clotting time, and the ability to cross-react with the rabbit antiserum. The significance of periodate oxidation in relation to the possible sequence of sugars in the carbohydrate prosthetic group in the glycoprotein is discussed. Iodination and heating in buffers of acid and alkaline pH values of sheep plasma glycoprotein resulted in complete loss of trypsin activity and ability to prolong plasma clotting time. Iodination of the glycoprotein did not affect the immunological cross-reactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absolute yields of gaseous oxyfluorides SOF2, SO2F2, and SOF4 from negative, point-plane corona discharges in pressurized gas mixtures of SF6 with O2 and H2O enriched with18O2 and H2 18O have been measured using a gas chromatograph-mass spectrometer. The predominant SF6 oxidation mechanisms have been revealed from a determination of the relative18O and16O isotope content of the observed oxyfluoride by-product. The results are consistent with previously proposed production mechanisms and indicate that SOF2 and SO2F2 derive oxygen predominantly from H2O and O2, respectively, in slow, gas-phase reactions involving SF4, SF3, and SF2 that occur outside of the discharge region. The species SOF4 derives oxygen from both H2O and O2 through fast reactions in the active discharge region involving free radicals or ions such as OH and O, with SF5 and SF4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When materials processing is conducted in air surroundings by use of an impinging plasma jet, the ambient air will be entrained into the materials processing region, resulting in unfavorable oxidation of the feedstock metal particles injected into the plasma jet and of metallic substrate material. Using a cylindrical solid shield may avoid the air entrainment if the shield length is suitably selected and this approach has the merit that expensive vacuum chamber and its pumping system are not needed. Modeling study is thus conducted to reveal how the length of the cylindrical solid shield affects the ambient air entrainment when materials processing (spraying, remelting, hardening, etc.) is conducted by use of a turbulent or laminar argon plasma jet impinging normally upon a flat substrate in atmospheric air. It is shown that the mass flow rate of the ambient air entrained into the impinging plasma jet cannot be appreciably reduced unless the cylindrical shield is long enough. In order to completely avoid the air entrainment, the gap between the downstream-end section of the cylindrical solid shield and the substrate surface must be carefully selected, and the suitable size of the gap for the turbulent plasma jet is appreciably larger than that for the laminar one. The overheating of the solid shield or the substrate could become a problem for the turbulent case, and thus additional cooling measure may be needed when the entrainment of ambient air into the turbulent impinging plasma jet is to be completely avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, stable and long laminarplasma jets have been successfully generated, and thus it is possible to achieve low-noise working surroundings, better process repeatability and controllability, and reduced metal-oxidation degree in plasma materials processing. With such a recent development in thermal plasma science and technology as the main research background, modeling studies are performed concerning the DCarcplasmatorch for generating the long laminar argon plasma jet. Two different two-dimensional modeling approaches are employed to deal with the arc-root attachment at the anode surface. The first approach is based on circumferentially uniform arc-root attachment, while the second uses the so-called fictitious anode method. Modeling results show that the highest temperature and maximum axial-velocity at the plasmatorch exit are ~15000 K and ~1100 m/s, respectively, for the case with arc current of 160 A and argon flow rate of 1.95×10{sup}(-4)kg/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. By varying the exposure time of these treatments the surface concentration of oxygenated groups adsorbed on the CNT arrays can be controlled. CNT arrays with very low amount of oxygenated groups exhibit a superhydrophobic behavior. In addition to their extremely high static contact angle, they cannot be dispersed in DI water and their impedance in aqueous electrolytes is extremely high. These arrays have an extreme water repellency capability such that a water droplet will bounce off of their surface upon impact and a thin film of air is formed on their surface as they are immersed in a deep pool of water. In contrast, CNT arrays with very high surface concentration of oxygenated functional groups exhibit an extreme hydrophilic behavior. In addition to their extremely low static contact angle, they can be dispersed easily in DI water and their impedance in aqueous electrolytes is tremendously low. Since the bulk structure of the CNT arrays are preserved during the UV/ozone, oxygen plasma, and vacuum annealing treatments, all CNT arrays can be repeatedly switched between superhydrophilic and superhydrophobic, as long as their O/C ratio is kept below 18%.

The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network.

The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here.

Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.

Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.

The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.

At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the effect of dry oxidation on the electrochemical properties of carbon nanotube arrays is investigated. Oxygenated surface functional groups were introduced to the arrays by oxygen plasma treatment, where their surface concentrations were varied by controlling the exposure time. The finding presented herein shows an augmentation of nearly thirty times in term of specific capacitance when the arrays are oxidized. Similar behavior is also observed in the non-aqueous electrolytes where the specific capacitance of the oxidized carbon nanotube arrays is measured more than three times higher than that of the pristine ones. However, overexposure to oxygen plasma treatment reverses this effect. At such high oxidation level, the damage to the graphitic structure becomes more pronounced such that the capacitive behavior of the arrays is overshadowed by their resistive behavior. These findings are important for further development of carbon nanotube based electrochemical capacitors. © 2012 Materials Research Society.