977 resultados para Plant-insect Interactions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry-a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system-operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction patterns between the dioecious shrub Baccharis concinna Barroso (Asteraceae) and its speciose galling insect community were studied in southeastern Brazil. Two hypotheses were tested in this study: "the differential reproduction and growth hypothesis" that predicts that male plants present fewer reproductive structures and are larger than female plants; and the 'sex-biased herbivory hypothesis' that predicts that male plants support a larger abundance of insect galls than female plants. Plants did not show sexual dimorphism in growth (= mean leaf number). However, male plants had longer shoots and a lower average number of inflorescences than female plants. These results corroborate the hypothesis that male plants grow more and reproduce less than female plants. No statistically significant difference was found in the number of galls between male and female plants, but a sex by environmental effect on gall number was detected. When each species of galling insect was individually analyzed per population of the host plant, the rates of attack varied between sex and population of the host plant, and they were highly variable among the species of galling insects. These results highlight the importance of the interaction between sex and environment in the community structure of galling insects and indicate that other variables besides host sex may influence the patterns of attack by galling herbivores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Piperaceae species have been placed among the basal angiosperm and are adapted to a variety of habitats including moist forests, secondary vegetation and dry high lands. The major anatomical/morphology features are of small trees, vines, and shrubs for Piper species, while the epiphytic and succulent characteristics are predominant forms among Peperomia species. Their secondary chemistry can be mostly represented by amides, phenylpropanoids/lignoids, and chromenes in addition to a phletoria of biosynthetically mixed-origin secondary compounds. Although several amides and lignans are known as insecticides, several phytophagous insects, among which some considered pests of economic importance, have been observed feeding vigorously on Piperaceae species. Herein we describe the feeding preferences of fourteen phytophagous species of Coleoptera, Lepidoptera and Hemiptera over approximately fifty Piperaceae species observed in São Paulo, SP, Brazil, in a long-term basis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insects associated with syconia of Ficus citrifolia in central Brazil. Fig trees present a diverse interaction with different groups of organisms. The inflorescence, or syconium, has characteristics that form a microenvironment in which interactions occur between fig trees and invertebrates. This study aimed to identify the insect fauna associated with the figs of Ficus citrifolia and to quantitatively describe the distribution pattern of the insects in the syconium, in an urban area in central Brazil. The syconia were used by 12 species of insects. Our results showed that the insects found on Ficus citrifolia presented a pattern of occurrence that depends on the composition of species found within each syconium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whether or not species participating in specialized and obligate interactions display similar and simultaneous demographic variations at the intraspecific level remains an open question in phylogeography. In the present study, we used the mutualistic nursery pollination occurring between the European globeflower Trollius europaeus and its specialized pollinators in the genus Chiastocheta as a case study. Explicitly, we investigated if the phylogeographies of the pollinating flies are significantly different from the expectation under a scenario of plant-insect congruence. Based on a large-scale sampling, we first used mitochondrial data to infer the phylogeographical histories of each fly species. Then, we defined phylogeographical scenarios of congruence with the plant history, and used maximum likelihood and Bayesian approaches to test for plant-insect phylogeographical congruence for the three Chiastocheta species. We show that the phylogeographical histories of the three fly species differ. Only Chiastocheta lophota and Chiastocheta dentifera display strong spatial genetic structures, which do not appear to be statistically different from those expected under scenarios of phylogeographical congruence with the plant. The results of the present study indicate that the fly species responded in independent and different ways to shared evolutionary forces, displaying varying levels of congruence with the plant genetic structure

Relevância:

90.00% 90.00%

Publicador:

Resumo:

P>1. Root herbivores and pathogens interfere with basic below-ground plant function, and can thereby affect plant fitness and spatial and temporal patterns in natural plant communities. However, there has been little development of concepts and theories on below-ground plant defence, a deficit that is in contrast to the abundance of theorizing for above-ground plant parts.2. A review of the past 10 years of research on below-ground plant-herbivore interactions has revealed that, similar to above-ground tissues, root defences can be expressed constitutively or induced upon herbivore attack, and can be classified into direct and indirect traits, tolerance, and escape. Indeed, it has been shown that roots tolerate herbivory by outgrowing or re-growing lost tissues, or resist it by producing secondary metabolites that are toxic to herbivores or attract natural enemies of herbivores.3. We propose that, similar to above-ground plant-herbivore theories, the partition of abiotic and biotic factors over ecological succession can serve as the basis for predicting investment in defence strategies below-ground.4. Investigation of herbivore pressure and root responses along primary and secondary successional gradients suggests that: (i) roots are often fast growing, thinner and softer in early compared to later succession. (ii) Insect and nematode herbivore pressure increases until mid-succession and later decreases. (iii) Mycorrhizal abundance increases with succession, and the composition of fungal species changes through succession, often shifting from arbuscular mycorrhizae to ecto-mycorrhizae.5. Based on these findings, and on classical (above-ground) plant defence theory, we suggest the following set of testable hypotheses for below-ground plant defence: (i) During succession, early plants invest most of their resources in growth and less in defences (associated with a general lack of herbivores and pathogens, and with limited availability of resources in the system), therefore relying more on re-growth (tolerance) strategies. (ii) During mid-succession, a buildup of herbivore pressure facilitates replacement by plant species that exhibit greater direct and indirect defence strategies. (iii) Constitutive and inducible levels of defences may trade-off, and early successional plants should rely more on induction of defences after herbivore attack, whereas late successional plants will increasingly rely on constitutively produced levels of physical and chemical defence. (iv) Successional changes in microbial associations have consequences for root defence by improving plant nutrition and defence expression as well as directly competing for root space; however, toxic or impenetrable root defences may also limit association with root symbionts, and so may constrain the expression of root defence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The minimal replicon of the Pseudomonas plasmid pVS1 was genetically defined and combined with the Escherichia coli p15A replicon, to provide a series of new, oligocopy cloning vectors (5.3 to 8.3 kb). Recombinant plasmids derived from these vectors were stable in growing and nongrowing cells of root-colonizing P. fluorescens strains incubated under different environmental conditions for more than 1 month.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Bumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change. Method: We sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient. Results: We found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides. Conclusions: Here, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the complete genome sequence of the free-living bacterium Pseudomonas protegens (formerly Pseudomonas fluorescens) CHA0, a model organism used in plant-microbe interactions, biological control of phytopathogens, and bacterial genetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non-neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate-responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell-specific, robust, real-time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant-herbivore interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In specific and obligate interactions the nature and abundance of a given species can have important effects on the survival and population dynamics of associated organisms. In a phylogeographic framework, we therefore expect that the fates of organisms interacting specifically are also tightly interrelated. Here we investigate such a scenario by analyzing the genetic structures of species interacting in an obligate plant-insect pollination lure-and-trap antagonism, involving Arum maculatum (Araceae) and its specific psychodid (Diptera) visitors Psychoda phalaenoides and Psycha grisescens. Because the interaction is asymmetric (i.e., only the plant depends on the insect), we expect the genetic structure of the plant to be related with the historical pollinator availability, yielding incongruent phylogeographic patterns between the interacting organisms.Using insect mtDNA sequences and plant AFLP genome fingerprinting, we inferred the large-scale phylogeographies of each species and the distribution of genetic diversities throughout the sampled range, and evaluated the congruence in their respective genetic structures using hierarchical analyses of molecular variances (AMOVA). Because the composition of pollinator species varies in Europe, we also examined its association with the spatial genetic structure of the plant.Our findings indicate that while the plant presents a spatially well-defined genetic structure, this is not the case in the insects. Patterns of genetic diversities also show dissimilar distributions among the three interacting species. Phylogeographic histories of the plant and its pollinating insects are thus not congruent, a result that would indicate that plant and insect lineages do not share the same glacial and postglacial histories. However, the genetic structure of the plant can, at least partially, be explained by the type of pollinators available at a regional scale. Differences in life-history traits of available pollinators might therefore have influenced the genetic structure of the plant, the dependent organism, in this antagonistic interaction.