964 resultados para Planets and satellites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets. © 2013. The American Astronomical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impacts of micrometeoroids on the surfaces of the plutonian small satellites Nix and Hydra can generate dust particles. Even in this region so far from the Sun these tiny ejected particles are under the effects of the solar radiation pressure. In this work, we investigate the orbital evolution of the escaping ejecta from both the small satellites under the effects of the radiation pressure combined with the gravitational effects of Pluto, Charon, Nix and Hydra. The mass production rate of micron-sized dust particles generated by micrometeoroids hitting the satellites is obtained, and numerical simulations are performed to derive the lifetime of the ejecta. These pieces of information allow us to estimate the optical depth of a putative ring, which extends from the orbits of Nix to Hydra. The ejected particles, between the orbits of Nix and Hydra, form a wide ring of about 16 000 km. Collisions with the massive bodies and escape from the system are mainly determined by the effects of the solar radiation pressure. This is an important loss mechanism, removing 30 per cent of the initial set of 1 μm-sized particles in 1 yr. The surviving particles form a ring too faint to be detectable with the derived maximum optical depth of 4 × 10-11. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a near-infrared (0.9-2.4 mu m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (approximate to 10-300 Myr). Our sample is composed of 48 low-resolution (R approximate to 100) spectra and 41 moderate-resolution spectra (R greater than or similar to 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of similar to 10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, Ki, Nai, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal librations represent oscillations about the axis of a rotating axisymmetric fluid-filled cavity. An analytical theory is developed for the case of a spherical cavity in the limit when the libration frequency is small in comparison with the rotation rate, but large in comparison with the inverse of the spin-up time. It is shown that longitudinal librations create a steady zonal flow through the nonlinear advection in the Ekman layers. The theory can be applied to laboratory experiments as well as to solid planets and satellites with a liquid core. Copyright © Cambridge University Press 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of the physical properties of trans-Neptunian objects (TNOs) are a powerful probe into the processes of planetesimal formation and solar system evolution. James Webb Space Telescope (JWST) will provide unique new capabilities for such studies. Here, we outline where the capabilities of JWST open new avenues of investigation, potentially valuable observations and surveys, and conclude with a discussion of community actions that may serve to enhance the eventual science return of JWST's TNO observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viroids and most viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selection pressure shaping the evolution of the secondary structures of these pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary stars are frequent in the universe, with about 50% of the known main sequence stars being located at a multiple star system (Abt, 1979). Even though, they are universally thought as second rate sites for the location of exo-planets and the habitable zone, due to the difficulties of detection and high perturbation that could prevent planet formation and long term stability. In this work we show that planets in binary star systems can have regular orbits and remain on the habitable zone. We introduce a stability criterium based on the solution of the restricted three body problem and apply it to describe the short period planar and three-dimentional stability zones of S-type orbits around each star of the Alpha Centauri system. We develop as well a semi-analytical secular model to study the long term dynamics of fictional planets in the habitable zone of those stars and we verify that planets on the habitable zone would be in regular orbits with any eccentricity and with inclination to the binary orbital plane up until 35 degrees. We show as well that the short period oscillations on the semi-major axis is 100 times greater than the Earth's, but at all the time the planet would still be found inside the Habitable zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ENGLISH: In May 1971, a joint united states - Mexican experiment, Project Little Window 2, (LW-2) involving data collected by satellite, aircraft and ship sensors was made in the southern part of the Gulf of California. LW-2 was planned as an improved and enlarged version of LW-l (conducted the previous year; Stevenson and Miller, 1971) with field work scheduled to be made within a 200 by 200 km square region in the Gulf of California. The purposes of the new field study were to determine through coordinated measurements from ships, aircraft and satellites, the utility of weather satellites to measure surface temperature features of the ocean from space and specifically to evaluate the high resolution infrared sensors aboard N~ 1, ITOS 1 and NIMBUS 4 and to estimate the magnitude of the atmospheric correction factors needed to bring the data from the spacecraft sensors into agreement with surface measurements. Due to technical problems during LW-2, however, useful data could not be obtained from ITOS 1 and NIMBUS 4 so satellite information from only NOAA-1 was available for comparison. In addition, a new purpose was added, i.e., to determine the feasibility of using an Automatic picture Transmission (APT) receiver on shore and at sea to obtain good quality infrared data for the local region. SPANISH: En mayo 1971, los Estados Unidos y México realizaron un experimento en conjunto, Proyecto Little Window 2 (LW-2), en el que se incluyen datos obtenidos mediante captadores de satélites, aviones y barcos en la parte meridional del Golfo de California. Se planeó LW-2 para mejorar y ampliar el proyecto de LW-l (conducido el año anterior; Stevenson y Miller, 1971), realizándose el trabajo experimental en una región de 200 por 200 km cuadrados, en el Golfo de California. El objeto de este nuevo estudio experimental fue determinar mediante reconocimientos coordinados de barcos, aviones y satélites la conveniencia de los satélites meteorológicos para averiguar las características de la temperatura superficial del océano desde el espacio, y especialmente, evaluar los captadores infrarrojos de alta resolución a bordo de NOAA 1, ITOS 1 Y NIMBUS 4, y estimar la magnitud de los factores de corrección atmosféricos necesarios para corregir los datos de los captadores espaciales para que concuerden con los registros de la superficie. Sin embargo, debido a problemas técnicos durante LW-2, no fue posible obtener datos adecuados de ITOS 1 y NIMBUS 4, as1 que solo se pudo disponer de la información de NOAA 1 para hacer las comparaciones. Además se quiso determinar la posibilidad de usar un receptor de Trasmisión Automático de Fotografias (APT) en el mar para obtener datos infarojos de buena calidad en la región local. (PDF contains 525 pages.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.

Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.

Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the absence of the selective availability, which was turned off on May 1, 2000, the ionosphere can be the largest source of error in GPS positioning and navigation. Its effects on GPS observable cause a code delays and phase advances. The magnitude of this error is affected by the local time of the day, season, solar cycle, geographical location of the receiver and Earth's magnetic field. As it is well known, the ionosphere is the main drawback for high accuracy positioning, when using single frequency receivers, either for point positioning or relative positioning of medium and long baselines. The ionosphere effects were investigated in the determination of point positioning and relative positioning using single frequency data. A model represented by a Fourier series type was implemented and the parameters were estimated from data collected at the active stations of RBMC (Brazilian Network for Continuous Monitoring of GPS satellites). The data input were the pseudorange observables filtered by the carrier phase. Quality control was implemented in order to analyse the adjustment and to validate the significance of the estimated parameters. Experiments were carried out in the equatorial region, using data collected from dual frequency receivers. In order to validate the model, the estimated values were compared with ground truth. For point and relative positioning of baselines of approximately 100 km, the values of the discrepancies indicated an error reduction better than 80% and 50% respectively, compared to the processing without the ionospheric model. These results give an indication that more research has to be done in order to provide support to the L1 GPS users in the Equatorial region.