936 resultados para Pipeline Spanning
Resumo:
This report reviews some of the natural ecological processes at work within a salt marsh as they relate to a spill of natural gas condensate - a mixture of aliphatic hydrocarbons, n-hexane, benzene, toluene, and xylene. It also reviews the environmental impacts of some of the components of natural gas condensate as well as related compounds (crude oil, higher molecular weight hydrocarbons, polycyclic aromatic hydrocarons - PAHs, linear alkyl-benzenes - LABs, etc.) on salt marsh ecosystems in southern Louisiana and elsewhere in the world. The behavior and persistence of these compounds once they have entered the environment is also considered.
Resumo:
This paper describes a method for monitoring the variation in support condition of pipelines using a vibration technique. The method is useful for detecting poor support of buried pipelines and for detecting spanning and depth of cover in sub-sea lines. Variation in the pipe support condition leads to increased likelihood of pipe damage. Under roadways, poorly supported pipe may be damaged by vehicle loading. At sea, spanned sections of pipe are vulnerable to ocean current loading and also to snagging by stray anchors in shallow waters. A vibrating `pig' has been developed and tested on buried pipelines. Certain features of pipe support, such as voids and hard spots, display characteristic responses to vibration, and these are measured by the vibrating pig. Post-processing of the measured vibration data is used to produce a graphical representation of the pipeline support and certain `feature characteristics' are identified. In field tests on a pipeline with deliberately constructed support faults, features detected by the vibrating pig are in good agreement with the known construction.
Resumo:
This paper describes the use of fibre optic sensing with Brillouin Optical Time-Domain Reflectometry (BOTDR) for near-continuous (distributed) strain monitoring of a large diameter pipeline, buried in predominantly granular material, subjected to a pipe jack tunnelling operation in London Clay. The pipeline, buried at shallow depth, comprises 4.6 m long sections connected with standard bell and spigot type joints, which connect to a continuous steel pipeline. In this paper the suitability of fibre optic sensing with BOTDR for monitoring pipeline behaviour is illustrated. The ability of the fibre optic sensor to detect local strain changes at joints and the subsequent impact on the overall strain profile is shown. The BOTDR strain profile was also used to infer pipe settlement through a process of double-integration and was compared to pipe settlement measurements. The close approximation of the measured pipe settlement provides further confidence in fibre optic strain sensing with BOTDR to investigate the intricacies of pipeline behaviour, pipe-soil interaction and interaction between pipe sections when subjected to ground movement. Copyright ASCE 2006.
Resumo:
The soil-pipeline interactions under lateral and upward pipe movements in sand are investigated using DEM analysis. The simulations are performed for both medium and dense sand conditions at different embedment ratios of up to 60. The comparison of peak dimensionless forces from the DEM and earlier FEM analyses shows that, for medium sand, both methods show similar peak dimensionless forces. For dense sand, the DEM analysis gives more gradual transition of shallow to deep failure mechanisms than the FEM analysis and the peak dimensionless forces at very deep depth are higher in the DEM analysis than in the FEM analysis. Comparison of the deformation mechanism suggests that this is due to the differences in soil movements around the pipe associated with its particulate nature. The DEM analysis provides supplementary data of the soil-pipeline interaction in sand at deep embedment condition.
Resumo:
Background: Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. Several lines of linkage and association studies have repeatedly suggested that the chromosome 5q22-33 region is implicated in the aetiology of s
Resumo:
This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.
Resumo:
Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).