925 resultados para Pin on disc
Resumo:
This paper reports the effect of confining pressure on the mechanical behavior of granular materials from micromechanical considerations starting from the grain scale level, based on the results of numerically simulated tests on disc assemblages using discrete element modeling (DEM). The two macro parameters which are influenced by the increase in confining pressure are stiffness (increases) and volume change (decreases). The lateral strain coefficient (Poisson's ratio) at the beginning of the test is more or less constant. The angle of internal friction slightly decreases with increase in confining pressure. The numerical results of disc assemblages indicate very clearly a non-linear Mohr-Coulomb failure envelope with increase in confining pressure. The increase in average coordination number and accompanying decrease of fabric anisotropy reduce the shear strength at higher confining pressures. Micromechanical explanations of the macroscopic behavior are presented in terms of the force and fabric anisotropy coefficients. (C) 1999 Elsevier Science Ltd. AII rights reserved.
Resumo:
In the present investigation, basic studies were conducted using Inclined pin-on-plate sliding Tester to understand the role of surface texture of hard material against soft materials during sliding. Soft materials such as Al-Mg alloy, pure Al and pure Mg were used as pins and 080 M40 steel was used as plate in the tests. Two surface parameters of steel plates — roughness and texture — were varied in tests. It was observed that the transfer layer formation and the coefficient of friction which has two components, namely adhesion and plowing component, are controlled by the surface texture of harder material. For the case of Al-Mg alloy, stick-slip phenomenon was absent under both dry and lubricated conditions. However, for the case of Al, it was observed only under lubricated conditions while for the case of Mg, it was observed under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The plowing component of friction was highest for the surface that promotes plane strain conditions near the surface and was lowest for the surface that promotes plane stress conditions near the surface.
Resumo:
In the present investigation, soft materials, such as Al-4Mg alloy, high-purity Al and pure Mg pins were slid against hard steel plates of various surface textures to study the response of materials during sliding. The experiments were conducted using an inclined pin-on-plate sliding apparatus under both dry and lubricated conditions in an ambient environment. Two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. In general, the response was dependent on material pair, normal load, lubrication, and surface texture of the harder material. More specifically, for the case of Al-4Mg alloy, the stick-slip response was absent under both dry and lubricated conditions. For Al, stick-slip was observed only under lubricated conditions. For the case of Mg, the stick-slip response was seen under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on the plowing component of friction. The plowing component of friction was the highest for the surfaces that promoted plane strain conditions and was the lowest for the surfaces that promoted plane stress conditions near the surface.
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An industrial base oil, a blend of different paraffin fractions, is heated to 130 degrees C (1) in the ambient and (2) for use as a lubricant in a steel pin on a steel disk sliding experiment. The base oil was tested with and without test antioxidants: dimethyl disulfide (DMDS) and alkylated diphenylamine (ADPA). Primary and secondary oxidation products were monitored continuously by FTIR over a 100 h period. In addition, friction and wear of the steel pin were monitored over the same period and the chemical transformation of the pin surface was monitored by XPS. The objective of this work is to observe the catalytic action of the steel components on the oil aging process and the efficacy of the antioxidant to reduce oxidation of oil used in tribology as a lubricant. Possible mechanistic explanations of the aging process as well as its impact on friction and wear are discussed.
Resumo:
In order to improve the wear resistance of the gamma-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 degrees C) wear behaviors of laser clad gamma/Cr7C3/TiC composite coatings with different constitution of NiCr-Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary gamma/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough gamma/Cr7C3 eutectics matrix and their stability under high-temperature exposure.
Resumo:
Two simulative test methods were used to study galling in sheet forming of two types of stainlesssteel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. Thepin-on-disc test was used to analyse the galling resistance of different combinations of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditionsduring ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of theduplex steel. Trials were also performed in an industrial tool used for high volume production of pumpcomponents, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component.It was found that LDX steels can be formed to high strain levels in tools normally applied for forming ofaustenitic steels, but tool adaptations are needed to comply with the higher strength and springback of thematerial.
Resumo:
O primeiro registro para o Atlântico Sul ocidental de uma espécie do gênero Malacoraja Stehmann, 1970 é feita com base na descrição de Malacoraja obscura, espécie nova, proveniente do talude continental do Sudeste brasileiro dos estados do Espírito Santo e Rio de Janeiro em profundidades de 808-1105 m. A espécie nova é conhecida através de cinco exemplares e é distinta de seus congêneres pela sua coloração dorsal composta por numerosas manchas esbranquiçadas e pequenas na região do disco e nadadeiras pélvicas, por apresentar uma fileira irregular de espinhos ao longo da superfície dorsal mediana da cauda a qual persiste em espécimes maiores (desde a base da cauda até dois-terços do seu comprimento numa fêmea de 680 mm de comprimento total, CT) e uma região pequena desprovida de dentículos na base ventral da cauda (estendendo somente até a margem distal da nadadeira pélvica). Outros caracteres diagnósticos em combinação incluem a ausência de espinhos escapulares em indivíduos maiores, número elevado de fileiras dentárias (64/62 fileiras num macho subadulto de 505 mm de CT e 76/74 numa fêmea de 680 mm de CT) e de vértebras (27-28 Vtr, 68-75 Vprd), coloração ventral do disco uniformemente castanha escura, duas fenestras pós-ventrais na cintura escapular, fenestra pós-ventral posterior grande, forame magno circular e dois forames para a carótida interna na placa basal ventral do neurocrânio. Machos adultos não são conhecidos, porém uma descrição anatômica de M. obscura, sp. nov., é fornecida. Comparações são realizadas com todo o material conhecido de M. kreffti, com a literatura sobre M. senta e com material abundante de M. spinacidermis da África do Sul; M. obscura, sp. nov., assemelha-se mais a M. spinacidermis do Atlântico Sul oriental em esqueleto dérmico, coloração e tamanho. Malacoraja é monofilético devido à sua espinulação e apêndices rostrais conspícuos e é aparentemente composta por dois grupos de espécies, um para M. obscura e M. spinacidermis e outro para M. kreffti e M. senta, porém a elucidação das relações filogenéticas entre as espécies necessita de mais informações anatômicas, principalmente das duas últimas espécies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente trabalho de mestrado teve como meta realizar um estudo do comportamento do cobre particulado em ensaios tribológicos do tipo pino contra disco. O cobre é atualmente utilizado em até 15% em massa das pastilhas de freios automotivos e tal utilização é responsável pela emissão de até 70% do cobre particulado presente no ar. Devido ao caráter carcinogênico do cobre, se faz necessária sua substituição. Foram realizados ensaios tribológicos pino disco com adição de diferentes meios interfaciais. Foram utilizados pares tribológicos aço/aço, em ensaios a seco de pino contra disco com adição de meio interfacial nanoparticulado de óxido de ferro, grafite e de cobre metálico em diferentes granulometrias (400 m, 20 m e 50 nm). Após os ensaios, amostras das superfícies de pinos e discos para cada uma das adições de cobre, bem como para a condição sem adição de meio interfacial, foram caracterizadas utilizando técnicas de microscopia eletrônica de varredura, de forma a entender o comportamento das partículas de cobre e sua contribuição para o coeficiente de atrito. As adições de cobre obtiveram os maiores coeficientes de atrito, e entre elas os coeficientes de atrito foram mais altos durante todos os ensaios para a adição de 50 nm, seguido de 20 m e 400 m. A análise das superfícies tribológicas em MEV mostrou heterogeneidade das superfícies ensaiadas em relação à presença de debris oxidados e camadas compactas. Observou-se a presença de cobre apenas nas superfícies ensaiadas com adição dos cobres de 50 nm e 20 m. A presença de um filme óxido compacto e contínuo foi observada apenas nas superfícies tribológicas ensaiadas sem adição de meio interfacial e com adição de cobre a 400 m.
Resumo:
A vertical pin on horizontal disc machine has been used to conduct a series of experiments in air under dry and lubricating sliding conditions. For dry sliding low load and speed combinations were chosen to correspond to the mild wear region below the Welsh T1 transition. Lubricated tests were conducted under flooded conditions using Esso Technical White Oil alone and with a 0.1% stearic acid additive, for load and speed ranges that produced substantial amounts of asperity contact and thus a boundary lubricated regime of wear. The test material in all cases was AISI 52100 steel, for unlubricated sliding subjected to loads from 5 to 50 N and a range of speeds from 10-3 to 1.0 ms-1, and for lubricated sliding loads of 50 to 123 N and for speeds of 10-2 to 1.0 ms-1. Unlubricated wear debris was found to be a mixture of -Fe_2O_3 and -Fe. Unlubricated wear was found to occur via a thin film logarithmic oxide growth followed by agglomeration into thicker oxide plateaux 2 to 10 m in thickness. Lubricated wear occurred via thick film diffusion controlled oxide growth producing homogeneous oxide plateaux 0.1 to 0.2 m in thickness. X-ray photoelectron spectroscopy identified the presence of a surface film on pins worn in White Oil with stearic acid, which is thought to be iron stearate. A model has been developed for unlubricated wear based upon the postulated growth of thin film oxides by a logarithmic rate law. The importance of sliding geometry and environment to the dominant wear mechanism has been illustrated.