994 resultados para Pigments.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most linmological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.
Resumo:
Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC) water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
Annatto dyes are widely used in food and are finding increasing interest also for their application in the pharmaceutical and cosmetics industry. Bixin is the main pigment extracted from annatto seeds and accounts for 80% of the carotenoids in the outer coat of the seeds; norbixin being the water-soluble form of the bixin. Typically annatto dyes are extracted from the seeds by mechanical means or solutions of alkali, edible oil or organic solvents, or a combination of the two depending on the desired final product. In this work CGAs are investigated as an alternative separation method for the recovery of norbixin from a raw extraction solution of annatto pigments in KOH. A volume of CGAs generated from a cationic surfactant (CTAB) solution is mixed with a volume of annatto solution and when the mixture is allowed to settle it separates into the top aphron phase and the bottom liquid phase. Potassium norbixinate presented in the annatto solution will interact with the surfactant in the aphron phase, which results in the effective separation of norbixin. Recovery= 94% was achieved at a CTAB to norbixin molar ratio of 3.3. In addition a mechanism of separation is proposed here based on the separation results with the cationic surfactant and an anionic surfactant (bis-2-ethyl hexyl sulfosuccinate, AOT) and measurements of surfactant to norbixin ratio in the aphron phase; electrostatic interactions between the surfactant and norbixin molecules result in the fort-nation of a coloured complex and effective separation of norbixin. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Samples containing red pigment have been collected from two different archaeological sites dating to the Neolithic (Çatalhöyük in Turkey and Sheikh-e Abad in Iran) and have been analysed by a range of techniques. Sub-samples were examined by IR spectroscopy and X-ray diffraction, whilst thin sections were studied using optical polarising microscopy, synchrotron based IR microscopy and environmental scanning electron microscopy with energy dispersive X-ray analysis. Thin layers of red paint in a wall painting from Çatalhöyük were found to contain ochre (hematite and clay) as well as an unexpected component, grains of red and colourless obsidian, which have not been identified in any previous studies of the wall paintings at Çatalhöyük. These small grains of obsidian may have improved the reflective properties of the paint and made the artwork more vivid in the darkness of the buildings. Analysis of a roughly shaped ball of red sediment found on a possible working surface at Sheikh-e Abad revealed that the cause of the red colouring was the mineral hematite, which was probably from a source of terra rossa sediment in the local area. The results of this work suggest it is unlikely that this had been altered by the Neolithic people through mixing with other minerals.
Resumo:
We have studied the effects of nitrate supply under photosynthetic active radiation (PAR) plus ultraviolet radiation (UVR) exposure on photosynthetic pigments (chlorophyll a and carotenoids), photoprotective UV screen mycosporine-like amino acids (MAAs), and photosynthetic parameters, including the maximum quantum yield (F(v)/F(m)) and electron transport rate (ETR) on the red agarophyte Gracilaria tenuistipitata. Apical tips of G. tenuistipitata were cultivated under ten different concentrations of NO(3)(-) for 7 days. It has been shown that G. tenuistipitata cultured under laboratory conditions has the ability to accumulate high amounts of MAAs following a nitrate concentration-dependent manner under PAR+UVR. Two MAAs were identified, shinorine and porphyra-334. The relative concentration of the first increased under high concentrations of nitrate, while the second one decreased. The presence of antheraxanthin is reported for the first time in this macro-algae, which also contains zeaxanthin, lutein, and beta-carotene. The accumulation of pigments, photoprotective compounds, and photosynthetic parameters of G. tenuistipitata is directly related to N availability. All variables decreased under low N supplies and reached constant maximum values with supplements higher than 0.5 mM NO(3)(-). Our results suggest a high potential to acclimation and photoprotection against stress factors (including high PAR and UVR) directly related to N availability for G. tenuistipitata.
Resumo:
Zinc oxide is a widely used white inorganic pigment. Transition metal ions are used as chromophores and originate the ceramic pigments group. In this context, ZnO particles doped with Co, Fe, and V were synthesized by the polymeric precursors method, Pechini method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of decomposition temperatures due to different exothermal events, which were identified as H(2)O elimination, organic compounds degradation and phase formation. The samples were structurally characterized by X-Ray diffractometry revealing the formation of single phase, corresponding to the crystalline matrix of ZnO. The samples were optically characterized by diffuse reflectance measurements and colorimetric coordinates L*, a*, b* were calculated for the pigment powders. The pigment powders presented a variety of colors ranging from white (ZnO), green (Zn(0.97)Co(0.03)O), yellow (Zn(0.97)Fe(0.03)O), and beige (Zn(0.97)V(0.03)O).
Resumo:
Among lampyrids, intraspecific sexual communication is facilitated by spectral correspondence between visual sensitivity and bioluminescence emission from the single lantern in the tail. Could a similar strategy be utilized by the elaterids (click beetles), which have one ventral abdominal and two dorsal prothoracic lanterns? Spectral sensitivity [S(lambda)] and bioluminescence were investigated in four Brazilian click beetle species Fulgeochlizus bruchii, Pyrearinus termitilluminans, Pyrophorus punctatissimus and P. divergens, representing three genera. In addition, in situ microspectrophotometric absorption spectra were obtained for visual and screening pigments in P. punctatissimus and P. divergens species. In all species, the electroretinographic S(lambda) functions showed broad peaks in the green with a shoulder in the near-ultraviolet, suggesting the presence of short- and long-wavelength receptors in the compound eyes. The long-wavelength receptor in Pyrophorus species is mediated by a P540 rhodopsin in conjunction with a species-specific screening pigment. A correspondence was found between green to yellow bioluminescence emissions and its broad S(lambda) maximum in each of the four species. It is hypothesized that in elaterids, bioluminescence of the abdominal lantern is an optical signal for intraspecifc sexual communication, while the signals from the prothoracic lanterns serve to warn predators and may also provide illumination in flight.
Resumo:
MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.
Resumo:
Objetivou-se com o presente trabalho, estabelecer a relação entre os pigmentos fotossintéticos extraídos em DMSO e as leituras obtidas no clorofilômetro portátil ClorofiLOG® 1030, gerando modelos matemáticos capazes de predizer os teores de clorofila e de carotenóides em folhas de mamoneira. O trabalho foi conduzido na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Algodão, situada em Campina Grande, Estado da Paraíba, em outubro de 2010. Para a análise indireta, foi utilizado um equipamento portátil, sendo realizada a leitura em discos foliares com diferentes tonalidades de verde, sendo feita, nesses mesmos discos, a determinação da clorofila pelo método clássico. Para a extração da clorofila, utilizaram-se 5 mL de dimetilsulfóxido (DMSO), a qual foi mantida em banho-maria a 70ºC, por 30 minutos, e retirou-se 3 mL da alíquota para leitura em espectrofotômetro nos comprimentos de onda de 470, 646 e 663 nm. Os dados foram submetidos à análise da variância e regressão polinomial. A leitura obtida no clorofilômetro portátil foi a variável dependente, e os pigmentos fotossintéticos determinados pelo método clássico foi a variável independente. Os resultados indicaram que o clorofilômetro portátil ClorofiLOG® 1030, associado a modelos matemáticos, permitiu estimar a concentração dos pigmentos fotossintéticos, exceto a clorofila b, com alta precisão, com economia de tempo e com reagentes normalmente utilizados nos procedimentos convencionais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)