951 resultados para Photo catalytic oxidation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twelve mediators have been modified by adsorption onto the paraffin impregnated graphite electrodes (IGE). The resulting electrodes exhibit electrocatalytic activity of different degrees towards oxidation of 1,4-dihydronicotinamide adenine dinucleotide (NADH). The electrocatalytic ability of the chemically modified electrode (CME) depends mainly on the formal potential and molecular structure of mediator. The formation of the charge transfer complex between NADH and adsorbed mediator has been demonstrated by the experiments using a rotating disk electrode. An electrocatalytic scheme obeying Michaelis-Menten kinetics has been confirmed, and some kinetic parameters were estimated. The solution pH influences markedly the electrocatalytic activity of the modified electrode. Various possible reasons are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemically modified electrodes (CMEs) were prepared by adsorbing different dyes, including methylene blue (MB), toluidine blue (TB) and brilliant cresyl blue (BCB), onto glassy carbon electrodes (GCE) with anodic pretreatment. The electrochemical reactions of adsorbed dyes are fairly reversible at low coverages. The CMEs are more stable in acid solutions than in alkaline ones, which is mainly due to decomposition of the dyes in the latter media. They exhibit an excellent catalytic ability for the oxidation of nicotinamide coenzymes (NADH and NADPH). The formation of a charge transfer complex between the coenzyme and the adsorbed mediator has been demonstrated using a rotating disk electrode. The charge transfer complex decomposition is a slow step in the overall electrode reaction process. Some kinetic parameters are estimated. Dependence of the electrocatalytic activity of the CMEs on the solution pH is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

G chemically modified electrode (CME) was prepared by electrochemical copolymerization of pyrrole and Methylene Blue. The resulting CME exhibits effective electrocatalytic activity towards the oxidation of reduced nicotinamide coenzymes (NADH and NADPH),

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The kinetics of prussian blue (PB) film itself during the redox process and of the catalytic oxidation of ascorbic acid (AH_2) on it have been studied in detail. The charge transfer diffusion coefficient D_(ct) in PB film is determined as 2.62×10~(-10)cm~2·s~(-1), using potential-step chronoamperometry, chronocoulometry and constant-current chronopotentialmetry, respectively. The rate constant of the cross-exchange reaction between AH_2 in solution and the active centers in PB film is measured in rotating d...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report an interesting finding that the catalytic performance of supported Ag/SiO2 catalysts toward selective catalytic oxidation of CO in hydrogen at low temperatures can be greatly enhanced by pretreatment of the SiO2 support before catalyst preparation. Calcination of SiO2 at appropriate temperatures preferentially removes the H-bonded SiOH, which results in the highly dispersive Ag/SiO2 catalyst and thus improves the catalytic performance. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heterogeneous catalytic oxidation of a series of thioethers (2-thiomethylpyrimidine, 2-thiomethyl-4,6-dimethyl-pyrimidine, 2-thiobenzylpyrimidine, 2-thiobenzyl-4,6-dimethylpyrimidine, thioanisole, and n-heptyl methyl sulfide) was performed in ionic liquids by using MCM-41 and UVM-type mesoporous catalysts containing Ti, or Ti and Ge. A range of triflate, tetrafluoroborate, trifluoroacetate, lactate and bis(trifluoromethanesulfonyl)imide-based ionic liquids were used. The oxidations were carried out by using anhydrous hydrogen peroxide or the urea-hydrogen peroxide adduct and showed that ionic liquids are very effective solvents, achieving greater reactivity and selectivity than reactions performed in dioxane. The effects of halide and acid impurities on the reactions were also investigated. Recycling experiments on catalysts were carried out in order to evaluate Ti leaching and its effect on activity and selectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports the first observation, using in situ FTIR spectroscopy, of the oxidation of CO adsorbates on the Ru(0001) electrode to CO under open circuit (oc) conditions in both perchloric acid and sulphuric acid solution at 20 and 55 °C. While the significant oc oxidation of the adsorbed CO on the Ru(0001) electrode was observed in perchloric acid solution, much less oc oxidation took place in sulfuric acid solution due to the specific adsorption of bisulfate at the Ru surface which inhibits the surface oxidation and reduces the reactivity of the surface towards the oxidation of CO . The oc oxidation of the CO depends strongly on the oxygen concentration in the solution and the temperature. The data so obtained are compared to those observed at the gas|solid interface, as well as to those obtained from the electro-oxidation of CO , and possible new catalytic oxidation reaction mechanisms are discussed. In addition, it is shown that the C-O frequency of the adsorbed CO may be used as an effective probe of the open circuit potential. © 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ligated Pd(II) complexes have been studied for the catalytic oxidation of terminal olefins to their corresponding methyl ketones. The method uses aqueous hydrogen peroxide as the terminal oxidant; a sustainable and readily accessible oxidant. The choice of ligand, counterion and solvent all have a significant effect on catalytic performance and we were able to develop systems which perform well for these challenging oxidations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have performed ab initio density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on Ru(0001). Several reaction pathways and transition states are identified. A much higher reaction barrier compared to that on Pt(111) is determined, confirming that the Ru is very inactive for CO oxidation under UHV conditions. The origin of the reaction barrier was analyzed. It is found that in the transition state the chemisorbed O atom sits in an unfavorable bonding site and a significant competition for bonding with the same substrate atoms occurs between the CO and the chemisorbed O, resulting in the high barrier. Ab initio molecular dynamics calculations show that the activation of the chemisorbed O atom from the initial hcp hollow site (the most stable site) to the bridge site is the crucial step for the reaction. The CO oxidation on Ru(0001) via the Eley-Rideal mechanism has also been investigated. A comparison with previous theoretical work has been made. (C) 2000 American Institute of Physics. [S0021-9606(00)31223-5].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of multicarboxylic acid appended imidazolium ionic liquids ( McaILs) with chloride [ Cl](-) or bromide [ Br](-) as anions have been synthesized and characterized. Deprotonation of these ionic acids gives the corresponding zwitterions. Re-protonation of the zwitterions with strong Bronsted acids gives a series of new ionic acid-adducts, many of which remained as room-temperature ionic liquids. A new catalytic system, McaIL/PdCl2 for the selective catalytic oxidation of styrene to acetophenone with hydrogen peroxide as an oxidant has been attempted. In the presence of McaILs, it is found that the quantity of palladium chloride PdCl2 used can be greatly reduced while the activity ( TOF) and selectivity towards acetophenone are enhanced sharply. It is also shown that the catalytic properties of this system could be finely tuned through the molecular design of the McaILs. The best TOF value obtained so far is 146 h(-1) with 100% conversion of styrene at 93% selectivity to acetophenone. In addition, the catalytic activity has been maintained for at least ten catalytic cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper describes the catalytic oxidation of urea performed by nickel hydroxide and nickel/cobalt hydroxide modified electrodes by using both electrodeposited films and nanoparticles. The incorporation of Co foreign atoms leads to a slight increase in sensitivity besides the shift in redox process, avoiding the oxygen reaction. Nanostructured Ni80Co20(OH)(2) was synthesized by sonochemical route producing 5 nm diameter particles characterized by high-resolution transmission electron microscopy (HRTEM) being immobilized onto electrode by using the electrostatic Layer-by-layer technique, yielding attractive modified electrodes for sensor development. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)