970 resultados para Phasianus colchicus, Nest predation, Pheasant, Sus scrofa, Wild boar
Resumo:
In recent decades the management of large game mammals has become increasingly intensive in south central Spain (SCS), resulting in complex epidemiological scenarios for disease maintenance, and has probably impeded schemes to eradicate tuberculosis (TB) in domestic livestock. We conducted an analysis of risk factors which investigated associations between the pattern of tuberculosis-like lesions (TBL) in wild boar (Sus scrofa) and red deer (Cervus elaphus) across 19 hunting estates from SCS and an extensive set of variables related to game management, land use and habitat structure. The aggregation of wild boar at artificial watering sites was significantly associated with an increasing risk of detecting TBL in both species, which probably relates to enhanced opportunities for transmission. Aggregation of wild boar at feeding sites was also associated with increased risks of TBL in red deer. Hardwood Quercus spp. forest availability was marginally associated with an increased risk of TB in both species, whereas scrubland cover was associated with a reduced individual risk of TBL in the wild boar. It is concluded that management practices that encourage the aggregation of hosts, and some characteristics of Mediterranean habitats could increase the frequency and probability of both direct and indirect transmission of TB. These findings are of concern for both veterinary and public health authorities, and reveal tuberculosis itself as a potential limiting factor for the development and sustainability of such intensive game management systems in Spanish Mediterranean habitats.
Resumo:
Invasive exotic species can negatively impact local biodiversity. We present here a report of a nest predation of an endemic bird species, variable oriole (Icterus pyrrhopterus) by the introduced black-tufted marmoset (Callithrix penicillata)in an agricultural landscape highly disturbed by human activities. Two nestlings were predated, by adults of the introduced marmoset during two alternate days. Antipredator behavior and vocal mimicry were observed in variable oriole, while copulation was observed in black-tufted marmoset during the predation. The use of mobbing against predators by I. pyrrhopterus was observed and it is described here by the first time. The potential impact of the introduced marmosets to local biodiversity is discussed.
Resumo:
The risk of transmission of pathogens from free-ranging wild boars (Sus scrofa scrofa) to outdoor domestic pigs (S. scrofa domesticus) is of increasing concern in many European countries. We assess this risk, using Switzerland as an example. We estimated 1) the prevalence of important pathogens in wild boars and 2) the risk of interactions between wild boars and outdoor pigs. First, we tested 252 wild boars from selected areas between 2008 and 2010 for infection with Brucella spp. Bacterial prevalence was estimated to 28.8% (confidence interval [CI] 23.0-34.0) when using bacterial culture (B. suis Biovar 2) and real-time polymerase chain reaction. Antibody prevalence was 35.8% (CI 30.0-42.0), which was significantly higher than in previous studies in Switzerland. We also tested 233 wild boars for porcine reproductive and respiratory syndrome virus (PRRSV). Antibody prevalence was 0.43% (CI 0.01-2.4) for EU-PRRSV and real-time reverse transcription polymerase chain reaction results were negative. These findings suggest that B. suis is increasingly widespread in wild boars and PRRSV is currently not of concern. Second, we documented the spatial overlap between free-ranging wild boars and outdoor piggeries by mapping data on their respective occurrence. Wild boars are most widespread in the mountain range along the western and northern Swiss borders, while most piggeries are located in central lowlands. A risk of interaction is mainly expected at the junction between these two bioregions. This risk may increase if wild boars expand eastward and southward beyond anthropogenic barriers believed to limit their range. Therefore, we evaluated the potential of expansion of the wild boar population. Population trends suggest a continuous increase of wild boars for the past 15 yr. Surveillance of selected wildlife passages using cameras on highways and main roads indicates that these barriers are permeable (average of up to 13 wild boar crossings per 100 days). Thus an increase of wild boar range should be considered. There may be a risk of B. suis spillover from wild boars in Switzerland, which could increase in the future. Data on the occurrence of interactions between pigs and wild boars are needed to assess this risk.
Resumo:
Brood parasitism by brown-headed cowbirds (Molothrus ater) reduces reproductive success in many passerines that nest in fragmented habitats and ecological edges, where nest predation is also common. We tested the hypothesis that parasitism and predation are often linked because cowbirds depredate nests discovered late in the host's nesting cycle to enhance future opportunities for parasitism. Over a 20-year study period, brood parasitism by cowbirds was a prerequisite to observing marked inter- and intraannual variation in the rate of nest failure in an insular song sparrow (Melospiza melodia) population. Nest failure increased with the arrival and laying rate of cowbirds and declined when cowbirds ceased laying. The absence or removal of cowbirds yielded the lowest nest failure rates recorded in the study. The absence of cowbirds also coincided with the absence of an otherwise strong positive correlation between host numbers and the annual rate of nest failure. Host numbers, cowbird parasitism, and nest failure may be correlated because cowbirds facilitate nest failure rather than cause it directly. However, an experiment mimicking egg ejection by cowbirds did not affect nest failure, and, contrary to the main prediction of the predation facilitation hypothesis, naturally parasitized nests failed less often than unparasitized nests. Higher survival of parasitized nests is expected under the cowbird predation hypothesis when female cowbirds defend access to hosts because cowbirds should often depredate unparasitized nests but should not depredate nests they have laid in. Where female cowbirds have overlapping laying areas, we expect parasitized nests to fail more often than others if different cowbirds often discover the same nests. We suggest that nest predation by cowbirds represents an adaptation for successful parasitism and that cowbirds influence host demography via nest predation.
Resumo:
Financiado en parte por el proyecto de investigación de la Conselleria de Educación y Ciencia GVA-Pre-2008-036 y el Instituto Alicantino de Cultura Juan Gil-Albert.
Resumo:
Introduced mammals are major drivers of extinction and ecosystem change. As omnivores, feral pigs (Sus scrofa) are responsible for wholesale adverse effects on islands. Here, we report on the eradication of feral pigs from Santiago Island in the Galápagos Archipelago, Ecuador, which is the largest insular pig removal to date. Using a combination of ground hunting and poisoning, over 18,000 pigs were removed during this 30-year eradication campaign. A sustained effort, an effective poisoning campaign concurrent with the hunting program, access to animals by cutting more trails, and an intensive monitoring program all proved critical to the successful eradication. While low and fluctuating control efforts may help protect select native species, current eradication methods, limited conservation funds, and the potential negative non-target impacts of sustained control efforts all favor an intense eradication effort, rather than a sustained control program. The successful removal of pigs from Santiago Island sets a new precedent, nearly doubling the current size of a successful eradication, and is leading to more ambitious projects. However, now we must turn toward increasing eradication efficiency. Given limited conservation funds, we can no longer afford to spend decades removing introduced mammals from islands.
Resumo:
Acknowledgements The authors are grateful to Junta de Comunidades de Castilla-La Mancha (PCC-05-004-2, PAI06-0094, PCI-08-0096, PEII09-0032-5329) and the Ministerio de Economía y Competitividad (CTQ2013-48411-P) for financial support. M.J. Patiño Ropero acknowledges the Junta de Comunidades de Castilla-La Mancha for her PhD. fellowship.
Resumo:
[EN] The impact of nest predators on sea turtle hatching success is highly variable depending on predator abundance and also on interactions among different predators. Food web connectivity usually makes it difficult to understand predator-prey interactions and develop efficient conservation strategies. In the Cape Verde archipelago there is an important nesting area for loggerheads where ghost crabs are the only described nest predator. We have studied the impact of ghost crabs on loggerhead nests on this threatened population as well as the efficiency of several management practices to reduce this impact.
Resumo:
BACKGROUND Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain. RESULTS BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge. CONCLUSIONS Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions.
Resumo:
Wildlife vaccination is increasingly being considered as an option for tuberculosis control. We combined data from laboratory trials and an ongoing field trial to assess the risk of an oral Mycobacterium bovis BCG vaccine and a prototype heat-inactivated Mycobacterium bovis preparation for Eurasian wild boar (Sus scrofa). We studied adverse reactions, BCG survival, BCG excretion, and bait uptake by nontarget species. No adverse reactions were observed after administration of BCG (n = 27) or inactivated M. bovis (n = 21). BCG was not found at necropsy (175 to 300 days postvaccination [n = 27]). No BCG excretion was detected in fecal samples (n = 162) or in urine or nasal, oral, or fecal swab samples at 258 days postvaccination (n = 29). In the field, we found no evidence of loss of BCG viability in baits collected after 36 h (temperature range, 11°C to 41°C). Camera trapping showed that wild boar (39%) and birds (56%) were the most frequent visitors to bait stations (selective feeders). Wild boar activity patterns were nocturnal, while diurnal activities were recorded for all bird species. We found large proportions of chewed capsules (29%) (likely ingestion of the vaccine) and lost baits (39%) (presumably consumed), and the proportion of chewed capsules showed a positive correlation with the presence of wild boar. Both results suggest proper bait consumption (68%). These results indicate that BCG vaccination in wild boar is safe and that, while bait consumption by other species is possible, this can be minimized by using selective cages and strict timing of bait deployment.
Resumo:
BACKGROUND Infections with Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex (MTC) are shared between livestock, wildlife and sporadically human beings. Wildlife reservoirs exist worldwide and can interfere with bovine tuberculosis (TB) eradication efforts. The Eurasian wild boar (Sus scrofa) is a MTC maintenance host in Mediterranean Iberia (Spain and Portugal). However, few systematic studies in wild boar have been carried out in Atlantic regions. We describe the prevalence, distribution, pathology and epidemiology of MTC and other mycobacteria from wild boar in Atlantic Spain. A total of 2,067 wild boar were sampled between 2008 and 2012. RESULTS The results provide insight into the current status of wild boar as MTC and Mycobacterium avium complex (MAC) hosts in temperate regions of continental Europe. The main findings were a low TB prevalence (2.6%), a low proportion of MTC infected wild boar displaying generalized TB lesions (16.7%), and a higher proportion of MAC infections (4.5%). Molecular typing revealed epidemiological links between wild boar and domestic - cattle, sheep and goat - and other wildlife - Eurasian badger (Meles meles) and red fox (Vulpes vulpes) - hosts. CONCLUSIONS This study shows that the likelihood of MTC excretion by wild boar in Atlantic habitats is much lower than in Mediterranean areas. However, wild boar provide a good indicator of MTC circulation and, given the current re-emergence of animal TB, similar large-scale surveys would be advisable in other Atlantic regions of continental Europe.
Resumo:
BACKGROUND Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.
Resumo:
Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines
Resumo:
In sexually reproducing organisms, the specific combinations of parental alleles can have important consequences on offspring viability and fitness. Accordingly, genetic relationship between mates can be used as a criterion for mate choice. Here, we used microsatellite genetic markers to estimate the genetic relationship between mating pairs in the wild boar, Sus scrofa. Males, females and foetuses proceeding from Portugal, Spain and Hungary were genotyped using 14 microsatellite markers. The genetic relationship between mates was estimated using different measures of foetus heterozygosity. We found that the observed heterozygosity of foetuses was lower than that expected under random mating. This result occurred mainly when Sd2 (relatedness of parental genomes) was used as the heterozygosity measure. After simulations, we concluded that the observed low heterozygosity was possibly due to outbreeding avoidance. Outbreeding avoidance based on genetically different genomes might play an important role in species evolution and its genetic conservation.
Resumo:
Toxoplasmosis is one of the most important zoonotic diseases worldwide and is caused by the protozoan Toxoplasma gondii. Besides vertical infection during pregnancy, humans can get infected post-natally either by peroral uptake of sporulated Toxoplasma oocysts or by ingestion of tissue cysts upon consumption of raw or undercooked meat. The aim of this study was to approximate the risk of human infection via meat consumption by estimating the seroprevalence of T. gondii in slaughtered animals in Switzerland and to compare data with prevalences assessed 10 years ago. The study included pigs, cattle, sheep and wild boar of different age groups and housing conditions whenever possible and applicable. A P-30-ELISA was used to detect T. gondii-specific antibodies and to determine seroprevalences in meat juice of slaughtered animals. A total of 270 domestic pigs (120 adults, 50 finishing, 100 free-ranging animals), 150 wild boars, 250 sheep (150 adults, 100 lambs) and 406 cattle (47 calves, 129 heifers, 100 bulls, 130 adult cows) were tested. Seropositivity increased with the age of the assessed animals. Independent of the age-group, the overall seroprevalence was lowest in wild boars (6.7%), followed by pigs (23.3%), cattle (45.6%) and sheep (61.6%), respectively. Conventional fattening pigs and free-ranging pigs surprisingly had comparable seroprevalences (14.0% and 13.0%, respectively). Unlike in other European countries, where generally a decrease in the number of seropositive animals had been observed, we found that the prevalence of seropositive animals, when compared with that of 10 years ago, had increased for most species/age groups. Conclusively, the results demonstrated a high seroprevalence of T. gondii in animals slaughtered for meat production and revealed that increasing age of the animals is a more important risk factor than housing conditions in Switzerland.