993 resultados para Phase velocity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Black-blood MR coronary vessel wall imaging may become a powerful tool for the quantitative and noninvasive assessment of atherosclerosis and positive arterial remodeling. Although dual-inversion recovery is currently the gold standard, optimal lumen-to-vessel wall contrast is sometimes difficult to obtain, and the time window available for imaging is limited due to competing requirements between blood signal nulling time and period of minimal myocardial motion. Further, atherosclerosis is a spatially heterogeneous disease, and imaging at multiple anatomic levels of the coronary circulation is mandatory. However, this requirement of enhanced volumetric coverage comes at the expense of scanning time. Phase-sensitive inversion recovery has shown to be very valuable for enhancing tissue-tissue contrast and for making inversion recovery imaging less sensitive to tissue signal nulling time. This work enables multislice black-blood coronary vessel wall imaging in a single breath hold by extending phase-sensitive inversion recovery to phase-sensitive dual-inversion recovery, by combining it with spiral imaging and yet relaxing constraints related to blood signal nulling time and period of minimal myocardial motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate accuracy and reproducibility of flow velocity and volume measurements in a phantom and in human coronary arteries using breathhold velocity-encoded (VE) MRI with spiral k-space sampling at 3 Tesla. MATERIALS AND METHODS: Flow velocity assessment was performed using VE MRI with spiral k-space sampling. Accuracy of VE MRI was tested in vitro at five constant flow rates. Reproducibility was investigated in 19 healthy subjects (mean age 25.4 +/- 1.2 years, 11 men) by repeated acquisition in the right coronary artery (RCA). RESULTS: MRI-measured flow rates correlated strongly with volumetric collection (Pearson correlation r = 0.99; P < 0.01). Due to limited sample resolution, VE MRI overestimated the flow rate by 47% on average when nonconstricted region-of-interest segmentation was used. Using constricted region-of-interest segmentation with lumen size equal to ground-truth luminal size, less than 13% error in flow rate was found. In vivo RCA flow velocity assessment was successful in 82% of the applied studies. High interscan, intra- and inter-observer agreement was found for almost all indices describing coronary flow velocity. Reproducibility for repeated acquisitions varied by less than 16% for peak velocity values and by less than 24% for flow volumes. CONCLUSION: 3T breathhold VE MRI with spiral k-space sampling enables accurate and reproducible assessment of RCA flow velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rough a global coarse problem. Although these techniques are usually employed for problems in which the fine-scale processes are described by Darcy's law, they can also be applied to pore-scale simulations and used as a mathematical framework for hybrid methods that couples a Darcy and pore scales. In this work, we consider a pore-scale description of fine-scale processes. The Navier-Stokes equations are numerically solved in the pore geometry to compute the velocity field and obtain generalized permeabilities. In the case of two-phase flow, the dynamics of the phase interface is described by the volume of fluid method with the continuum surface force model. The MsFV method is employed to construct an algorithm that couples a Darcy macro-scale description with a pore-scale description at the fine scale. The hybrid simulations results presented are in good agreement with the fine-scale reference solutions. As the reconstruction of the fine-scale details can be done adaptively, the presented method offers a flexible framework for hybrid modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Angiographic studies suggest that acute vasospasm within 48 h of aneurysmal subarachnoid hemorrhage (SAH) predicts symptomatic vasospasm. However, the value of transcranial Doppler within 48 h of SAH is unknown. METHODS: We analyzed 199 patients who had at least 1 middle cerebral artery (MCA) transcranial Doppler examination within 48 h of SAH onset. Abnormal MCA mean blood flow velocity (mBFV) was defined as >90 cm/s. Delayed cerebral ischemia (DCI) was defined as clinical deterioration or radiological evidence of infarction due to vasospasm. RESULTS: Seventy-six patients (38%) had an elevation of MCA mBFV >90 cm/s within 48 h of SAH onset. The predictors of elevated mBFV included younger age (OR = 0.97 per year of age, p = 0.002), admission angiographic vasospasm (OR = 5.4, p = 0.009) and elevated white blood cell count (OR = 1.1 per 1,000 white blood cells, p = 0.003). Patients with elevated mBFV were more likely to experience a 10 cm/s fall in velocity at the first follow-up than those with normal baseline velocities (24 vs. 10%, p < 0.01), suggestive of resolving spasm. DCI developed in 19% of the patients. An elevated admission mBFV >90 cm/s during the first 48 h (adjusted OR = 2.7, p = 0.007) and a poor clinical grade (Hunt-Hess score 4 or 5, OR = 3.2, p = 0.002) were associated with a significant increase in the risk of DCI. CONCLUSION: Early elevations of mBFV correlate with acute angiographic vasospasm and are associated with a significantly increased risk of DCI. Transcranial Doppler ultrasound may be an early useful tool to identify patients at higher risk to develop DCI after SAH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boiling two-phase flow and the equations governing the motion of fluid in two-phase flows are discussed in this thesis. Disposition of the governing equations in three-dimensional complex geometries is considered from the perspective of the porous medium concept. The equations governing motion in two-phase flows were formulated, discretized and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is a three-dimensional 5-equation porous media model developed at VTT by Jaakko Miettinen. The development of two-phase flow and the resulting void fraction distribution was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test cases using PORFLO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guex, KJ, Lugrin, V, Borloz, S, and Millet, GP. Influence on strength and flexibility of a swing phase-specific hamstring eccentric program in sprinters' general preparation. J Strength Cond Res 30(2): 525-532, 2016-Hamstring injuries are common in sprinters and mainly occur during the terminal swing phase. Eccentric training has been shown to reduce hamstring injury rate by improving several risk factors. The aim of this study was to test the hypothesis that an additional swing phase-specific hamstring eccentric training in well-trained sprinters performed at the commencement of the winter preparation is more efficient to improve strength, ratio, optimum angle, and flexibility than a similar program without hamstring eccentric exercises. Twenty sprinters were randomly allocated to an eccentric (n = 10) or a control group (n = 10). Both groups performed their usual track and field training throughout the study period. Sprinters in the eccentric group performed an additional 6-week hamstring eccentric program, which was specific to the swing phase of the running cycle (eccentric high-load open-chain kinetic movements covering the whole hamstring length-tension relationship preformed at slow to moderate velocity). Isokinetic and flexibility measurements were performed before and after the intervention. The eccentric group increased hamstring peak torques in concentric at 60 degrees .s by 16% (p < 0.001) and at 240 degrees .s by 10% (p < 0.01), in eccentric at 30 degrees .s by 20% (p < 0.001) and at 120 degrees .s by 22% (p < 0.001), conventional and functional ratios by 12% (p < 0.001), and flexibility by 4 degrees (p < 0.01), whereas the control group increased hamstring peak torques only in eccentric at 30 degrees .s by 6% (p </= 0.05) and at 120 degrees .s by 6% (p < 0.01). It was concluded that an additional swing phase-specific hamstring eccentric training in sprinters seems to be crucial to address different risk factors for hamstring strain injuries, such as eccentric and concentric strength, hamstring-to-quadriceps ratio ratio, and flexibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling of the slug structure requires a new effort on fundamental research. To clarify some aspects of the horizontal slug flow, an experimental study of the behaviour of two isolated bubbles in a single-phase liquid flow was performed. This procedure was adopted to avoid the overlap of different phenomena induced by a train of long bubbles. The experimental facility consists of a 90-m horizontal PVC pipe with internal diameter of 0,053 m. The behaviour of two single air bubbles travelling in a water flow was studied. Focus was given on the influence of the distance between the bubbles on the velocity of the second bubble. This study allows the understanding of the mechanism of overtaking that takes place right after the slug formation and that precedes the coalescence of bubbles in a slug flow. The results show that bubbles placed behind a liquid slug smaller than a critical value move faster than the leading one. Otherwise, they move slower than the leading one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the experimental characterization of hydrodynamics and gas-liquid mass transfer in a three-phase fluidized bed containing polystyrene and nylon particles. The influence of gas and liquid velocities on phase holdups and volumetric gas-liquid mass transfer coefficient was investigated for flow conditions similar to those applied in biotechnological process. The phase holdups were obtained by the pressure profile technique. The volumetric gas-liquid mass transfer coefficient was obtained adjusting the experimental concentration profiles of dissolved oxygen in the liquid phase with the predictions of the axial dispersion model. According to experimental results the liquid holdup increases with the gas velocity, whereas the solid holdup decreases. The gas holdup increases significantly with the increase in gas velocity, and it shows for the three-phase fluidized bed comparable values or larger than those of bubble column. The volumetric gas-liquid mass transfer coefficient increases significantly with an increase in the air velocity for both bubble column and fluidized beds. In addition, in the operational condition of high liquid velocity, the presence of low-density particles in the bed increased the gas-liquid mass transfer, and thus the volumetric mass transfer coefficient values obtained in the fluidized bed were comparable or larger than those of bubble column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gravitational phase separation is a common unit operation found in most large-scale chemical processes. The need for phase separation can arise e.g. from product purification or protection of downstream equipment. In gravitational phase separation, the phases separate without the application of an external force. This is achieved in vessels where the flow velocity is lowered substantially compared to pipe flow. If the velocity is low enough, the denser phase settles towards the bottom of the vessel while the lighter phase rises. To find optimal configurations for gravitational phase separator vessels, several different geometrical and internal design features were evaluated based on simulations using OpenFOAM computational fluid dynamics (CFD) software. The studied features included inlet distributors, vessel dimensions, demister configurations and gas phase outlet configurations. Simulations were conducted as single phase steady state calculations. For comparison, additional simulations were performed as dynamic single and two-phase calculations. The steady state single phase calculations provided indications on preferred configurations for most above mentioned features. The results of the dynamic simulations supported the utilization of the computationally faster steady state model as a practical engineering tool. However, the two-phase model provides more truthful results especially with flows where a single phase does not determine the flow characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis investigated the elastic properties and phase transitions in selected mixed sulphate crystals – Lithium Hydrazinium Sulphate [LiN2H2SO4], Lithium Ammonium Sulphate [LiNH4SO4] and Lithium Potassium Sulphate [LiKSO4] – using ultrasonic technique. The pulse echo overlap technique has been used for measuring ultrasonic velocity and its dependence on temperature along different directions with waves of longitudinal and transverse polarizations. Two major numerical techniques and the corresponding computer programs developed as part of present work are presented in this thesis. All the 9 elastic constants of LHS are determined accurately from ultrasonic measurements and applying misorientation correction refines the constants. Ultrasonic measurements are performed in LAS to determine the elastic constants and to study the low temperature phase transitions. Temperature variation studies of elastic constant of LAS are performed for 6 different modes of propagation for heating and cooling at low temperatures. All the 5 independent elastic constants of LPS is determined using ultrasonic measurements. It is concluded that LPS crystal does not undergo a phase transition near this temperature. A comparison of the three crystals studied shows that LPS has maximum number of phase transitions and LHS has the least number. It is interesting to note that LPS has the simplest formula unit among the three. There is considerable scope for the future work on these crystals and others belonging to the sulphate family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density and the flux of wave-activity conservation laws are generally required to satisfy the group-velocity property: under the WKB approximation (i.e., for nearly monochromatic small-amplitude waves in a slowly varying medium), the flux divided by the density equals the group velocity. It is shown that this property is automatically satisfied if, under the WKB approximation, the only source of rapid variations in the density and the flux lies in the wave phase. A particular form of the density, based on a self-adjoint operator, is proposed as a systematic choice for a density verifying this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.