843 resultados para Pharmacy and pharmacology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1 beta, IL-6 and IL-10) in vitro. Methods Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100 mg/well) for 24 h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Key findings Clove (100 mg/well) inhibited IL-1 beta, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1 beta production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100 mg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Conclusions Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-kB pathway by eugenol, since it was the major compound found in clove

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney. Methods Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated. Results Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats. Conclusions Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant volatiles typically occur as a complex mixture of low-molecular weight lipophilic compounds derived from different biosynthetic pathways, and are seemingly produced as part of a defense strategy against biotic and abiotic stress, as well as contributing to various physiological functions of the producer organism. The biochemistry and molecular biology of plant volatiles is complex, and involves the interplay of several biochemical pathways and hundreds of genes. All plants are able to store and emit volatile organic compounds (VOCs), but the process shows remarkable genotypic variation and phenotypic plasticity. From a physiological standpoint, plant volatiles are involved in three critical processes, namely plant–plant interaction, the signaling between symbiotic organisms, and the attraction of pollinating insects. Their role in these ‘‘housekeeping’’ activities underlies agricultural applications that range from the search for sustainable methods for pest control to the production of flavors and fragrances. On the other hand, there is also growing evidence that VOCs are endowed with a range of biological activities in mammals, and that they represent a substantially under-exploited and still largely untapped source of novel drugs and drug leads. This review summarizes recent major developments in the study of biosynthesis, ecological functions and medicinal applications of plant VOCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Echinacea preparations are one of the best selling herbal medicinal products with a well established therapeutic use in the prophylaxis of upper respiratory tract infections. Their consumption is increasing, but information about their ability to inhibit cytochrome P450 enzymes (CYP) is fragmentary. The picture is further complicated by a lack of phytochemical characterization of previously tested preparations. Due to its well characterized immunomodulatory activity, the standardized Swiss registered Echinacea purpurea (L.) Moench Echinaforce extract was selected for detailed study. With the single baculovirus-expressed CYP isoforms 1A2, 2C19, 2D9 and 3A4, inhibitory actions were measured by monitoring fluorescent metabolites derived from enzyme substrates (supersome assay). The Echinaforce extract induced mild inhibition of all these isoforms, with CYP 3A4 being the most, and CYP 2D6 the least sensitive enzyme. To assess whether CYP inhibition might be a general feature of Echinacea preparations, an additional nine commercially available preparations were screened using CYP 3A4. All tested preparations were able to inhibit CYP 3A4, but inhibitory potencies (expressed as median inhibitory concentration, IC50) varied by a factor of 150. The alkylamides are thought to be responsible for the immunomodulatory activity of Echinacea, and so the concentration of 2E,4E,8Z,10E/Z-tetranoic acid isobutylamide (1) and total alkylamide content were determined in all preparations, and the latter was found to be associated with their CYP 3A4 inhibitory potency. The chemically pure alkylamides dodeca-2E,4E,8Z,10E/Z-tetranoic acid isobutylamide (1) and dodeca-2E,4E-dieonoic acid isobutylamide (2) showed inhibitory activity on CYP 2C19, 2D6 and 3A4. However, unlike the Echinaforce extract, the alkylamides did not induce CYP 1A2 inhibition. Thus, other, as yet unidentified constituents also contribute to the overall weak inhibitory effects seen with Echinacea preparations in-vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on surrogate of: No. 2, published in 1901.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.