993 resultados para Perturbation Technique


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding combustion instabilities requires accurate measurements of the acoustic velocity perturbation into injectors. This is often accomplished via the use of the two microphone technique, as this only requires two pressure transducers. However, measurements of the actual velocities emerging from the injectors are not often taken, leaving questions regarding the assumptions about the acoustic velocity. A comparison of velocity measured at downstream of the injector with that of two-microphone technique can show the accuracy and limitations of two-microphone technique. In this paper, velocity measurements are taken using both particle image velocimetry (PIV) and the two-microphone technique in a high pressure facility designed for aeroengine injector measurements. The flow is excited using an area modulation device installed on the choked end of the combustion chamber, with PIV measurements enabled by optical access downstream of the injector through a quartz tube and windows. Acoustic velocity perturbations at the injector are determined by considering the Fourier transformed pressure fluctuations for two microphones installed at a known distance upstream of the injector. PIV measurements are realized by seeding the air flow with micrometric water particles under 2.5 bar pressure at ambient temperature. Phase locked velocity fields are realized by synchronizing the acquisition of PIV images with the revolution of the acoustic modulator using the pressure signal measured at the face of injector. The mean velocity fluctuation is calculated as the difference between maximum and minimum velocities, normalized by the mean velocity of the unforced case. Those values are compared with the peak-to-peak velocity fluctuation amplitude calculated by the two-microphone technique. Although the ranges of velocity fluctuations for both techniques are similar, the variation of fluctuation with forcing frequencies diverges significantly with frequency. The differences can be attributed to several limitations associated with of both techniques, such as the quality of the signal, the signal/noise ratio, the accuracy of PIV measurements and the assumption of isentropic flow of the particle velocity from the plenum through the injector. We conclude that two-microphone methods can be used as a reference value for the velocity fluctuation in low order applications such as flame transfer functions, but not for drawing conclusions regarding the absolute velocity fluctuations in the injector. Copyright © 2013 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant ('RI-LVL'), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An aerodynamic sound source extraction from a general flow field is applied to a number of model problems and to a problem of engineering interest. The extraction technique is based on a variable decomposition, which results to an acoustic correction method, of each of the flow variables into a dominant flow component and a perturbation component. The dominant flow component is obtained with a general-purpose Computational Fluid Dynamics (CFD) code which uses a cell-centred finite volume method to solve the Reynolds-averaged Navier–Stokes equations. The perturbations are calculated from a set of acoustic perturbation equations with source terms extracted from unsteady CFD solutions at each time step via the use of a staggered dispersion-relation-preserving (DRP) finite-difference scheme. Numerical experiments include (1) propagation of a 1-D acoustic pulse without mean flow, (2) propagation of a 2-D acoustic pulse with/without mean flow, (3) reflection of an acoustic pulse from a flat plate with mean flow, and (4) flow-induced noise generated by the an unsteady laminar flow past a 2-D cavity. The computational results demonstrate the accuracy for model problems and illustrate the feasibility for more complex aeroacoustic problems of the source extraction technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review some recent developments in many body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the CW and CWI' approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicity in the calculations. The use of the PAW method in the framework of MBPT is also described. Finally, results which have been obtained using, MBPT for band offsets a interfaces and for defects presented, with companies on the main difficulties and cancels.

Schematic representation of the QP corrections (marked with ) to the band edges (E and E-v) and a defect level (F) for a Si/SiO2 interface (Si and O atoms are represented in blue and red, respectively, in the ball and stick model) with an oxygen vacancy leading to a Si-Si bond (the Si atoms involved in this bond are colored light blue).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic properties of zircon and hafnon, two wide-gap high-kappa materials, are investigated using many-body perturbation theory (MBPT) combined with the Wannier interpolation technique. For both materials, the calculated band structures differ from those obtained within density-functional theory and MBPT by (i) a slight displacement of the highest valence-band maximum from the Gamma point and (ii) an opening of the indirect band gap to 7.6 and 8.0 eV for zircon and hafnon, respectively. The introduction of vertex corrections in the many-body self-energy does not modify the results except for a global rigid shift of the many-body corrections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project is to provide an explanation for recently obtained binding constants for two similar guest molecules, NDMG and N-MAP, with a p-sulfonatocalix[6]arene host in ammonium acetate buffer. This work was done primarily using pressure perturbation calorimetry, which is a technique that determines the coefficient of thermal expansion, α, which is in turn related to the solute molecule's effect on the order of the surrounding water molecules. A series of experiments were designed to test the effects of suspected confounding variables on the validity of PPC data. PPC was then used to study NDMG and N-MAP in ammonium acetate buffer. NDMG exhibited a minimum in α as function of temperature, while N-MAP did not. This difference was theorized to be due to the formation of an intramolecular hydrogen bond in monocationic NDMG that would lower the heat capacity of the molecule and better distribute the molecule's charge. Computational work and nuclear magnetic resonance spectroscopy confirmed that monocationic, ring-closed NDMG has less concentrated charge and more constrained motion than monocationic, ring-open NDMG. This evidence supports the theory that monocationic NDMG forms an intramolecular hydrogen bond and that this may be responsible for the minimum in α. This difference may explain the differences in binding constants between NDMG and N-MAP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the reductive perturbation method of Taniuti with the introduction of an infinite sequence of slow time variables tau(1), tau(3), tau(5), ..., we study the propagation of long surface-waves in a shallow inviscid fluid. The Korteweg-de Vries (KdV) equation appears as the lowest order amplitude equation in slow variables. In this context, we show that, if the lowest order wave amplitude zeta(0) satisfies the KdV equation in the time tau(3), it must satisfy the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1), With n = 2, 3, 4,.... AS a consequence of this fact, we show with an explicit example that the secularities of the evolution equations for the higher-order terms (zeta(1), zeta(2),...) of the amplitude can be eliminated when zeta(0) is a solitonic solution to the KdV equation. By reversing this argument, we can say that the requirement of a secular-free perturbation theory implies that the amplitude zeta(0) satisfies the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1) This essentially means that the equations of the KdV hierarchy do play a role in perturbation theory. Thereafter, by considering a solitary-wave solution, we show, again with an explicit, example that the elimination of secularities through the use of the higher order KdV hierarchy equations corresponds, in the laboratory coordinates, to a renormalization of the solitary-wave velocity. Then, we conclude that this procedure of eliminating secularities is closely related to the renormalization technique developed by Kodama and Taniuti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential group delay measurement of narrowband fiber devices using a fiber polarization scrambler with a modulation phase shift technique is demonstrated. Accurate measurement is realized with high wavelength and delay resolution and immunity to environmental perturbation.