987 resultados para Periplasmic Nitrate Reductase
Resumo:
Seeds of common bean (Phaseolus vulgaris) with high molybdenum (Mo) concentration can supply Mo plant demands, but to date no studies have concomitantly evaluated the effects of Mo-enriched seeds on plants inoculated with rhizobia or treated with N fertilizer. This work evaluated the effects of seed Mo on growth and N acquisition of bean plants fertilized either by symbiotic N or mineral N, by measuring the activities of nitrogenase and nitrate reductase and the contribution of biological N2 fixation at different growth stages. Seeds enriched or not with Mo were sown with two N sources (inoculated with rhizobia or fertilized with N), in pots with 10 kg of soil. In experiment 1, an additional treatment consisted of Mo-enriched seeds with Mo applied to the soil. In experiment 2, the contribution of N2 fixation was estimated by 15N isotope dilution. Common bean plants grown from seeds with high Mo concentration flowered one day earlier. Seeds with high Mo concentration increased the leaf area, shoot mass and N accumulation, with both N sources. The absence of effects of Mo application to the soil indicated that Mo contents of Mo-enriched seeds were sufficient for plant growth. Seeds enriched with Mo increased nitrogenase activity at the vegetative stage of inoculated plants, and nitrate reductase activity at late growth stages with both N sources. The contribution of N2 fixation was 17 and 61 % in plants originating from low- or high-Mo seeds, respectively. The results demonstrate the benefits of sowing Mo-enriched seeds on growth and N nutrition of bean plants inoculated with rhizobia or fertilized with mineral N fertilizer.
Resumo:
Here, we report the culture and characterization of an alphaproteobacterium of the order Rhizobiales, isolated from the gut of the honey bee Apis mellifera. Strain PEB0122T shares >95 % 16S rRNA gene sequence similarity with species of the genus Bartonella, a group of mammalian pathogens transmitted by bloodsucking arthropods. Phylogenetic analyses showed that PEB0122T and related strains from the honey bee gut form a sister clade of the genus Bartonella. Optimal growth of strain PEB0122T was obtained on solid media supplemented with defibrinated sheep blood under microaerophilic conditions at 35-37 °C, which is consistent with the cultural characteristics of other species of the genus Bartonella. Reduced growth of strain PEB0122T also occurred under aerobic conditions. The rod-shaped cells of strain PEB0122T had a mean length of 1.2-1.8 μm and revealed hairy surface structures. Strain PEB0122T was positive for catalase, cytochrome c oxidase, urease and nitrate reductase. The fatty acid composition was comparable to those of other species of the genus Bartonella, with palmitic acid (C16 : 0) and isomers of 18- and 19-carbon chains being the most abundant. The genomic DNA G+C content of PEB0122T was determined to be about 45.5 mol%. The high 16S rRNA gene sequence similarity with species of Bartonella and its close phylogenetic position suggest that strain PEB0122T represents a novel species within the genus Bartonella, for which we propose the name Bartonella apis sp. nov. The type strain is PEB0122T ( = NCIMB 14961T = DSM 29779T).
Resumo:
A análise da atividade enzimática da redutase do nitrato baseou-se no método do ensaio in vivo, que foi padronizado para os tecidos foliares e radiculares do abacaxizeiro cultivado in vitro. As maiores atividades enzimáticas foram obtidas quando se empregou como meio de reação uma solução tampão fosfato 0,1 M, contendo KNO3 100 mM e 3% de n-propanol, a faixa de pH ótimo foi de 6,5 a 7,5. O tempo de incubação foi de 60 min a 30 °C. Essa padronização mostrou-se muito importante para a análise do ritmo diurno da redutase do nitrato em abacaxizeiro, visto que as condições de ensaio in vivo dessa enzima variam muito entre diferentes espécies vegetais. As folhas apresentaram as maiores atividades na presença de luz. As raízes mostraram atividade da redutase do nitrato também na ausência de luminosidade em níveis semelhantes aos observados na presença de luz. A atividade observada nas raízes foi sempre superior à das folhas, sugerindo que as raízes têm um importante papel na redução do nitrato nas condições de cultivo in vitro. O acúmulo de nitrato observado durante o ciclo diurno, nas folhas, evidenciou que a presença desse íon ocorreu em maiores níveis durante o período luminoso, estabelecendo uma correlação positiva com a atividade da redutase do nitrato. Entretanto, nas raízes, as maiores concentrações foram observadas na ausência de luz. Nesse caso, discute-se a possibilidade de outros fatores, além do nitrato, estarem contribuindo positivamente, induzindo uma elevada atividade enzimática na presença de luz.
Resumo:
O uso de fertilizantes, além dos riscos de contaminação ambiental, onera o agricultor, chegando a representar 40% dos custos de produção na cultura do milho. O presente estudo visa identificar características fisiológicas relacionadas com o aumento da eficiência do uso do nitrogênio e assim subsidiar programas de melhoramento genético direcionados para obtenção de genótipos de milho produtivos em solos com baixa disponibilidade de nitrogênio. Foram estudadas as variedades de milho Pedra Dourada, Catetão, Carioca (variedades locais, não melhoradas), BR 106, BR 105 (variedades melhoradas em solos férteis), Nitroflint e Nitrodente (variedades melhoradas em solos pobres em N). Plântulas de milho receberam solução nutritiva de Hoagland modificada quanto às fontes de N, sendo utilizadas duas doses de N (1 mM e 15 mM), 75% na forma nítrica e 25% na forma amoniacal. O experimento, composto por um fatorial 2 × 7 (duas doses de N e sete variedades) foi conduzido em casa de vegetação em blocos completos casualizados com três repetições. A deficiência de N afetou de modo muito mais intenso o crescimento das partes aéreas em todos os genótipos. As características bioquímicas estudadas (atividades da nitrato redutase, glutamina sintetase e conteúdo de pigmentos fotossintéticos) foram sensíveis à disponibilidade de N mas não permitiram discriminar diferenças genotípicas. A massa seca das plantas deficientes em N apresentou elevada correlação positiva (0,86) com a massa seca acumulada nas raízes dos diferentes genótipos. Tais resultados sugerem a importância do estudo das características morfológicas e fisiológicas do sistema radicular na seleção de genótipos eficientes quanto ao uso do nitrogênio.
Resumo:
In the present study, technological properties of L. plantarum strains isolated from naturally fermented sausages manufactured in the South region of Brazil were investigated in order to obtain a starter culture. The technological properties evaluated were the following: ability to growth at different pH values, at different temperatures, in different salt concentrations and in the presence of commercial curing salt, fast production of acid, determination of D - and L - lactic acid; nitrate reductase activity; antagonistic activity and stability of the isolated cultures after fermentation, concentration, and freeze-drying process. The isolated strains showed effectiveness to improve technological properties as starter cultures.
Resumo:
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO(3)(-)/NH(4)(+) or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary. GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH(4)(+) assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad`s leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
There are reports that strobilurin besides having a fungicide effect can promote physiologic benefits to the plants. However, this effect on banana plants was not studied yet. The objective of the present study was to evaluate the effect of strobirulins on the physiology of banana plantlets. For this purpose, cultivar Grand Naine banana plantlets were transferred to pots containing substrate and kept in a nursery with 50% shading. The experimental design was a completely randomized design with three treatments (water, azoxystrobin and pyraclostrobin) and five replications. The treatments were applied at 15, 30, 45, 60 and 75 days after transplanting at a dose 100 g a. i. ha(-1) with manual spray. Plant height, pseudostem diameter, shoot dry matter in strobilurin treated plants were higher than the untreated plants, however, the effect of fungicide treatment was different, being the most pronounced effect of pyraclostrobin compared to azoxystrobin. Plants treated with pyraclostrobin had higher leaf area, nitrate reductase activity and chlorophyll content of leaf total nitrogen than the plants treated with azoxystrobin and water, which did not differ. Strobilurins affect the physiology of the banana plantlets differently, the effect being more pronounced by pyraclostrobin.
Resumo:
Sugarcane is a very important economic crop in Brazil. The effects of abiotic stresses cause negative reduction of the productivity in the sugarcane industry. In order to identify indicators of stresses tolerance, two physiological variables were evaluated, nitrate reductase activity and chlorophyll contents in young plants of sugarcane, cv. IAC91-5155. The simultaneous effect of abiotic stresses of high occurrence in Brazilian soils are, water deficiency and aluminum toxicity. The plants were submitted to three treatments of water availability (% field capacity, FC): no stress (70% FC), moderate stress (55% FC), and extreme stress (40% FC); and three acidity treatments in the soil (base saturation, V%): no acidity (V=55%), average acidity (V=33%), and high acidity (V=23%). The experiment was carried out in greenhouse, with 29.7 +/- 4.3 degrees C and 75 +/- 10% RH. The experimental design was in randomized blocks, in 3x3 factorial arrangement, with four replicates. After 60 days, nitrate reductase activity and chlorophyll contents were evaluated in the diagnostic leaf. The results demonstrate that the response of plants to a combination of drought and aluminum toxicity, similar to the conditions in many natural environments, is different from the response of plants to each of these stresses applied individually, as typically tested in the laboratory. The nitrate reductase activity can be used as a biochemical-physiological marker of water deficiency while chlorophyll contents can be used as a biochemical-physiological marker of both of them, water deficiency or aluminum toxicity in soil. Both parameters can not be as a biochemical-physiological marker for acclimation of young plants of sugarcane cv. IAC91-5155, under the combined stresses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among the nutrients that are essential for the biological nitrogen fixation by soybean plants, molybdenum stands out for being a cofactor of the nitrate reductase, affecting enzymatic activity and, consequently, the nodulation process. The research had as objective to evaluate the effects of molybdenum application on soybean nodulation and nitrate reductase activity. The experiment was conduced in greenhouse, sowing soybean in 12 L pots, with two plants per plot. The treatments consisted of two application via (with the seeds and leaf dressing) and two molybdenum doses (12 and 24 g ha(-1) with the seeds; 30 and 60 g ha(-1) leaf dressing) in ammonium molybdate form, plus the control. The number and dry mass of nodules and nitrogen content in soybean leaves were evaluated. Samples of leaves for the evaluation of nitrate reductase activity were taken at 10 a.m. and 10 p.m. It was concluded that soybean nodulation is affected by Mo dose and application via, resulting in higher number and weight of nodules when it is applied with the seeds. The enzymatic activity of the nitrate reductase is influenced by Mo fertilization and it is higher for leaf dressing with the double of the recommended dose.
Resumo:
O estresse hídrico afeta profundamente o metabolismo celular vegetal. Neste trabalho, objetivou-se quantificar os efeitos da deficiência hídrica e sua recuperação sobre a atividade das enzimas do metabolismo do nitrogênio: redutase do nitrato (RN), glutamina sintetase (GS) e glutamato sintase (GOGAT) e sobre o acúmulo de prolina em plantas dos genótipos de milho BR 2121 e BR 205. O experimento foi conduzido em casa de vegetação, sob o delineamento inteiramente casualizado, com quatro repetições, utilizando-se vasos que continham 14,3kg de solo. Os tratamentos consistiram da combinação dos dois genótipos e quatro intervalos entre irrigações (1, 3, 5 e 7 dias). No dia da avaliação (49 dias após emergência), os tratamentos com intervalos entre 3 e 7 dias, haviam sido irrigados no dia anterior, caracterizando-se portanto como recuperação da deficiência hídrica leve e severa, respectivamente. As extrações e análises foram realizadas utilizando-se a terceira folha basípeta completamente expandida. As atividades das enzimas estudadas não diferiram entre os tratamentos de estresse hídrico, controle e recuperação do estresse moderado, entretanto as plantas sob recuperação do estresse severo apresentaram atividade enzimática superior à das plantas controle. O acúmulo de prolina livre nas folhas aumentou com o estresse hídrico e respondeu à recuperação do estresse apresentando redução. de modo geral, a atividade enzimática e o acúmulo de prolina apresentaram respostas inversas dentro dos tratamentos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work was evaluate the physiological indicators of association between water deficiency and soil acidity, by determining the nitrate reductase activity, the levels of free proline and initial growth of the root system of seedlings of sugarcane cv. IAC91-5155. After 30 days, the seedlings were transferred to plastic pots with 12 dm3 of dystrophic alic Red Latosol (Oxisol) and submitted to association of three treatments of water availability: no stress (70%), moderate stress (55%) and severe stress (40%), in according with field capacity and three acidity treatments: no stress (55%), moderate stress (33%) and severe stress (23%), considering the base saturation. The experimental design was that of random blocks under factorial scheme of 3x3, with four replicates. After 60 days under the stress association, the levels of free proline, the nitrate reductase activity and the growth of the sugarcane roots system were evaluated in seedlings of sugarcane. The nitrate reductase enzyme activity can be considered a physiological indicator of the effect of the association of acid and water stress in moderate conditions in soil, while the free proline can be considered physiological indicator to both stress in severe conditions. Water deficiency increasing reduced growth of sugarcane roots.
Resumo:
Intestinal pathogens are exposed to various stress conditions during their infectious cycle. Anaerobiosis, one of such hostile condition, is offered by the host within gut and intestinal lumen, where survival, multiplication and entry into intestinal epithelial cells are priority for the invasion of the pathogen. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. Vitamin B12 (cobalamin) is synthesized by Salmonella Typhimurium only under anaerobic growth conditions used as a cofactor in four known reactions. The deletion of cobS and cbiA genes prevent any form of cobalamin production. In the present study we evaluate the infection of birds by mutants of STM, with the anaerobic respiratory system committed by mutations in the genes: narG, napA, cobS, cbiA, frdA, dmsA, and torC. Virulence was assessed by oral inoculation of groups of one-day-old broilers with 0.1 mL of culture contained 10 8 colony forming units (CFU)/mL or diluted at 10 -3 and 10 -2 of strains mutants of Salmonella Typhimurium. Clinical signs and mortality were recorded over a period of 21 days. In general, the symptoms of chickens infected with the mutant strains were similar to those presenting by control birds. Except for STMNalr cbiA, all showed reduced capacity to cause mortality in comparison with the original strain. The mortality of group of chickens infected with STMNal r △narG, STMNal r △frdA, STMNal r △dmsA and STMNal r △cobS△cbiA showed significant decrease in mortality compared to control group (p<0.05).