957 resultados para Peripheral-type benzodiazepine receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare the acute and sustained renal hemodynamic effects on hypertensive patients of 100 mg irbesartan and 20 mg enalapril each once daily. PATIENTS: Twenty patients (aged 35-70 years) with uncomplicated, mild-to-moderate essential hypertension and normal serum creatinine levels completed this study. STUDY DESIGN: After random allocation to treatment (n=10 per group), administration schedule (morning or evening) was determined by further random allocation, with crossover of schedules after 6 weeks' therapy. Treatment and administration assignments were double-blind. Twenty-four-hour ambulatory blood pressure was monitored before and after 6 and 12 weeks of therapy. Renal hemodynamics were determined on the first day of drug administration and 12 and 24 h after the last dose during chronic treatment. RESULTS: Administration of each antihypertensive agent induced a renal vasodilatation with no significant change in glomerular filtration rate. However, the time course appeared to differ: irbesartan had no significant acute effect 4 h after the first dose, but during chronic administration a renal vasodilatory response was found 12 and 24 h after the dose; enalapril was effective acutely and 12 h after administration, but no residual effect was found 24 h after the dose. Both antihypertensive agents lowered mean ambulatory blood pressure effectively, with no significant difference between treatments or between administration schedules (morning versus evening). CONCLUSIONS: Irbesartan and enalapril have comparable effects on blood pressure and renal hemodynamics in hypertensive patients with normal renal functioning. However, the time profiles of the renal effects appear to differ, which might be important for long-term renoprotective effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes in nutritional parameters and adipocytokines after structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection are analyzed. Twenty-seven patients with chronic HIV infection (median CD4+ T cell count/microl: nadir, 394; at the beginning of structured interruptions, 1041; HIV viral load: nadir, 41,521 copies/ml; at the beginning of structured interruptions <50 copies/ml; median time of previous treatment: 60 months) were evaluated during three cycles of intermittent interruptions of therapy (8 weeks on/4 weeks off). CD4+ T cell count, HIV viral load, anthropometric measures, and serum concentrations of triglycerides, cholesterol, leptin, and tumor necrosis factor and its soluble receptors I and II were determined. After the three cycles of intermittent interruptions of therapy, no significant differences in CD4+ T cell count/microl, viral load, or serum concentrations of cholesterol or triglycerides with reference to baseline values were found. A near-significant higher fatty mass (skinfold thicknesses, at the end, 121 mm, at the beginning, 100 mm, p = 0.100), combined with a significant increase of concentration of leptin (1.5 vs. 4.7 ng/ml, p = 0,044), as well as a decrease in serum concentrations of soluble receptors of tumor necrosis factor (TNFRI, 104 vs. 73 pg/ml, p = 0.022; TNFRII 253 vs. 195 pg/ml, p = 0.098) were detected. Structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection induces a valuable positive modification in markers of lipid turnover and adipose tissue mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the fibroblast growth factor receptor 2 (FGFR2) cause a variety of craniosynostosis syndromes. The mutational spectrum tends to be narrow with the majority of mutations occurring in either exon IIIa or IIIc or in the intronic sequence preceding exon IIIc. Mutations outside of this hotspot are uncommon and the few identified mutations have demonstrated wide clinical variability, making it difficult to establish a clear-cut genotype-phenotype correlation. To better delineate the clinical picture associated with these unusual mutations, we describe a severely affected patient with Pfeiffer syndrome and a missense mutation in the tyrosine kinase (TK) domain of FGFR2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive aspergillosis is one of the most important infections in hematopoietic stem cell transplant recipients, with an incidence rate of 5-15% and an associated mortality of 30-60%. It remains unclear why certain patients develop invasive aspergillosis while others, undergoing identical transplant regimen and similar post transplant immunosuppression, do not. Over the last decade, pattern recognition receptors such as Toll-like receptors (TLRs) and the C-type lectin receptors (CLRs) have emerged as critical components of the innate immune system. By detecting specific molecular patterns from invading microbes and initiating inflammatory and subsequent adaptive immune responses, pattern recognition receptors are strategically located at the molecular interface of hosts and pathogens. Polymorphisms in pattern recognition receptors and downstream signaling molecules have been associated with increased or decreased susceptibility to infections, suggesting that their detection may have an increasing impact on the treatment and prevention of infectious diseases in the coming years. Infectious risk stratification may be particularly relevant for patients with hematologic malignancies, because of the high prevalence and severity of infections in this population. This review summarizes the innate immune mechanisms involved in Aspergillus fumigatus detection and the role of host genetic polymorphisms in susceptibility to invasive aspergillosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of secreted poxvirus tumor necrosis factor (TNF)-binding proteins has been isolated from Tanapox-infected cell supernatants. The inhibitor bound to a TNF-affinity column and was identified as the product of the 2L gene. Sequence analysis of 2L family members from other yatapoxviruses and swinepox virus yielded no sequence homology to any known cellular gene. The expressed Tanapox virus 2L protein bound to human TNF with high affinity (K(d) = 43 pM) and exhibits an unusually slow off-rate. However, 2L is unable to bind to a wide range of human TNF family members. The 2L protein can inhibit human TNF from binding to TNF receptors I and II as well as block TNF-induced cytolysis. Thus, Tanapox virus 2L represents an inhibitor of human TNF and offers a unique strategy with which to modulate TNF activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to assess the pharmacologic properties of the new orally active angiotensin II subtype I (AT1) antagonist UR-7247, a product with a half-life >100 h in humans. The experiment was designed as an open-label, single-dose administration study with four parallel groups of four healthy men receiving increasing single oral doses (2.5, 5, and 10 mg) of UR-7247 or losartan, 100 mg. Angiotensin II receptor blockade was investigated < or =96 h after drug intake, with three independent methods [i.e., the inhibition of blood pressure (BP) response to exogenous Ang II, an in vitro Ang II-receptor assay (RRA), and the reactive increase in plasma angiotensin II. Plasma drug levels also were measured. The degree of blockade observed in vivo was statistically significant < or = 96 h with all UR-7247 doses for diastolic BP (p < 0.05) and < or =48 h for systolic BP. The maximal inhibition achieved with 10 mg UR-7247 was measured 6-24 h after drug intake and reached 54 +/- 17% and 48 +/- 20% for diastolic and systolic responses, respectively. Losartan, 100 mg, induced a greater short-term AT1-receptor blockade than 2.5- and 5.0-mg doses of UR-7247 (p < 0.001 for diastolic BP), but the UR-7247 effect was longer lasting. In vivo, no significant difference was observed between 10 mg UR-7247 and 100 mg losartan 4 h after drug intake, but in vitro, the blockade achieved with 100 mg losartan was higher than that seen with UR-7247. Finally, the results confirm that UR-7247 has a very long plasma elimination half-life, which may be due to a high but also tight binding to protein binding sites. In conclusion, UR-7247 is a long-lasting, well-tolerated AT1 receptor in healthy subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential role of angiotensin-II in mediating catecholamine and neuropeptide-Y release in a human pheochromocytoma has been investigated. Angiotensin-II type I receptors are transcribed and translated into functional proteins in a surgically removed pheochromocytoma. Primary cell culture of the tumor has been studied in a perfused system. Angiotensin-II increased the release of norepinephrine and neuropeptide-Y by the pheochromocytes. Activation of the angiotensin-II type I receptors by angiotensin-II was associated with a rise in cytosolic free calcium. The renin-angiotensin system may, therefore, contribute to the secretion of catecholamines and NPY occurring in patients with pheochromocytoma and when stimulated trigger hypertensive crisis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have demonstrated that mice are polymorphic for the number of renin genes, with some inbred strains harboring one gene (Ren-1(c)) and other strains containing two genes (Ren-1(d) and Ren-2). In this study, the effects of 1% salt and deoxycorticosterone acetate (DOCA)/salt were investigated in one- and two-renin gene mice, for elucidation of the role of renin in the modulation of BP, cardiac, and renal responses to salt and DOCA. The results demonstrated that, under baseline conditions, mice with two renin genes exhibited 10-fold higher plasma renin activity, 100-fold higher plasma renin concentrations, elevated BP (which was angiotensin II-dependent), and an increased cardiac weight index, compared with one-renin gene mice (all P &lt; 0.01). The presence of two renin genes markedly increased the BP, cardiac, and renal responses to salt. The number of renin genes also modulated the responses to DOCA/salt. In one-renin gene mice, DOCA/salt induced significant renal and cardiac hypertrophy (P &lt; 0.01) even in the absence of any increase in BP. Treatment with losartan, an angiotensin II AT(1) receptor antagonist, decreased BP in two-renin gene mice but not in one-renin gene mice. However, losartan prevented the development of cardiac hypertrophy in both groups of mice. In conclusion, these data demonstrate that renin genes are important determinants of BP and of the responses to salt and DOCA in mice. The results confirm that the Ren-2 gene, which controls renin production mainly in the submaxillary gland, is physiologically active in mice and is not subject to the usual negative feedback control. Finally, these data provide further evidence that mineralocorticoids promote cardiac hypertrophy even in the absence of BP changes. This hypertrophic process is mediated in part by the activation of angiotensin II AT(1) receptors.