979 resultados para Perfused-rat-liver


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast protein liquid chromatography (FPLC) system using Mono Q (HR 5/5) anion-exchange column chromatography followed by highly cross-linked urea-polyacrylamide gel electrophoresis (urea-PAGE) was used for the purification of lysine-specific tRNA (tRNA(Lys)) from rat liver. Crude tRNA from rat liver was fractionated with a linear gradient of NaCl (0.3-0.8 M) in triethanolamine-HCl buffer, pH 4.5, and the activity of tRNA(Lys) was found to elute between 0.51 and 0.57 M NaCl. Using this concentration range of NaCl, tRNA(Lys) was refractionated on the same column with a shallow gradient, where a single peak of tRNA(Lys) activity was obtained. tRNA(Lys)-rich fractions recovered from the second run were electrophoretically separated on 16% polyacrylamide-7 M urea gel into one major band and three minor bands. The major band showed a specific activity of 997 pmols/A260 U for tRNALys with a 43-fold purification and approximately 17% recovery. The minor bands displayed negligible or no activity for lysine. tRNA(Lys) obtained by this method was found to be homogeneous by competitive aminoacylation. The advantages of FPLC followed by urea-PAGE in the purification of an amino acid-specific tRNA over conventional column chromatography are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The region -160 to -127 nt of the upstream of CYP-2B1/B2 gene has been found to function as a negative cis-acting element on the basis of DNase-I footprint and gel mobility shift assays as well as cell-free transcriptional assays using Bal-31 mutants. A reciprocal relationship in the interaction of the negative and the recently characterized positive elements with their respective protein factors has been found under repressed and induced conditions of the gene. The negative element also harbors the core glucocorticoid responsive sequence, TGTCCT. It is concluded that the negative element mediates the repressed state of the gene under the uninduced condition and also mediates the repressive effect of dexamethasone, when given along with the inducer phenobarbitone in rats. Dexamethasone is able to antagonize the effects of phenobarbitone at as low a concentration as 100 mu g/kg body wt in these animals. (C) 1995 Academic Press,Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The positive element (PE) (-69 to -98 bp) within the 5'-proximal region of the CYP2B1B2 gene (+1 to -179 bp) of rat liver is essential for phenobarbitone (PB) response and gives a single major complex with the rat liver cytosol in gel shift analysis. This complex corresponds to complex I (top) of the three complexes given by the nuclear extracts. PB treatment of rats leads to a decrease in complex I formation with the cytosol and PE and an increase in the same with the nuclear extract in gel shift analysis. Both the changes are counteracted by simultaneous okadaic acid administration. The nuclear protein giving rise to complex I has been isolated and has an M-r of 26 kDa. The cytosolic counterpart consists of two species, 26 and 28 kDa, as revealed by Southwestern blot analysis using labeled PE. It is concluded that PB treatment leads to the translocation accompanied by processing of the cytosolic protein species into the nucleus that requires protein dephosphorylation. It is suggested that PB may exert a global regulation on the transcription of many genes by modulating the phosphorylation status of different protein factors involved in transcriptional regulation. (C) 2002 Elsevier Science (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic accumulation and species of rare earth in rat liver were investigated by ICP-MS and chromatography after the rats were fed by a low dose of mixed rare earth for a long time or the administration of a high dose of lanthanum for a short time. It was found that the content of rare earth in the liver increased with the arising of dose of drug delivery. Their accumulation rate was different, for example, La>Ce>Nd>Pr. The protein which could combine,with rare earth specially were not gotten through chromatography. It was suggested that rare earth could bind to many proteins voluntarily, such as some important enzymes and it might be separated from the combined proteins under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic accumulation and species of lanthanum in Wistar rat liver were investigated by ICP-MS, gel exclusion chromatography and ultrafiltration after the rats were fed by low dose of lanthanum for a long time. It was found that the content of La in the liver increased regularly with arise of dose and time of drug delivery. After the administration was stopped for a certain time a part of lanthanum in the liver Tvas metabolized, but;the metabolic rate was very slow, The lanthanum in rat liver was distributed in the soluble protein with molecular weight: of more than 60000 mostly. Rare Earth existed in the six elution peaks separated by Sephacryl S-200. The amount of lanthanum in the first elution fraction is the largest, which was 88 percent in the whole content of lanthanum in proteins with molecular weight more than 60000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma aminohutyric acid (GAB A.) receptor tunctionaI status was artaIV se(l in pa It ial hcpatcctoIn ised.II'II). lead nitrate (LN) induced hyperplastic and N-nifrosodiethylantinc INDEAI treated nctplastic rat Iivers during peak DNA synthesis. The high-affinity I'HJGALA binding significantly decreased in PII and NDEi\ rats and the receptor affinity decreased in NDEA and increased in LN rats compared with control . in NDEA. displacement analysis of I'I IIGABA with muscimol showed loss of low-allinity site and a shill of high-allinity cite towards low-allinity . ' 1 he affinity sites shifted towards high-affinity in LN rats. 'file number of low-allinity 1'I Ilhicuc)lline receptors decreased cignilic:uttly in NDEA and I'll whereas it increased in LN rats. (ir\Bi\t receptor :gunist. unrscinrul. disc dependcnllyinhihilcd epidermal growth factor IEGI--) induced DNA synthesis :uul enhanced the tr:utsfnrnting grmvth )actor (Il I I'(il (tlI mediated DNA synthesis suppression in prim:uy hepalucvte cultures . Our results suggest that GABA,t reccjhtor act as an inhibitory signal fur hepatic cell prolifctatiun.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adult mammalian liver is predominantly in a quiescent state with respect to cell division. This quiescent state changes dramatically, however, if the liver is injured by toxic, infectious or mechanic agents (Ponder, 1996). Partial hepatectomy (PH) which consists of surgical removal of two-thirds of the liver, has been used to stimulate hepatocyte proliferation (Higgins & Anderson 1931). This experimental model of liver regeneration has been the target of many studies to probe the mechanisms responsible for liver cell growth control (Michalopoulos, 1990; Taub, 1996). After PH most of the remaining cells in the renmant liver respond with co-ordinated waves of DNA synthesis and divide in a process called compensatory hyperplasia. Hence, liver regeneration is a model of relatively synchronous cell cycle progression in vivo. In contrast to hepatomas, cell division is terminated under some intrinsic control when the original cellular mass has been regained. This has made liver regeneration a useful model to dissect the biochemical and molecular mechanisms of cell division regulation. The liver is thus, one of the few adult organs that demonstrates a physiological growth rewonse (Fausto & Mead, 1989; Fausto & Webber, 1994). The regulation of liver cell proliferation involves circulating or intrahepatic factors that are involved in either the priming of hepatocytes to enter the cell cycle (Go to G1) or progression through the cell cycle. In order to understand the basis of liver regeneration it is mandatory to define the mechanisms which (a) trigger division, (b) allow the liver to concurrently grow and maintain dilferentiated fimction and (c) terminate cell proliferation once the liver has reached the appropriate mass. Studies on these aspects of liver regeneration will provide basic insight of cell growth and dilferentiation, liver diseases like viral hepatitis, toxic damage and liver transplant where regeneration of the liver is essential. In the present study, Go/G1/S transition of hepatocytes re-entering the cell cycle after PH was studied with special emphasis on the involvement of neurotransmitters, their receptors and second messenger function in the control of cell division during liver regeneration