965 resultados para Performanz, Leistungsfähigkeit, Autokratien, Diktaturen, politische Regime.
Resumo:
Experimental study and optimization of Plasma Ac- tuators for Flow control in subsonic regime PRADEEP MOISE, JOSEPH MATHEW, KARTIK VENKATRAMAN, JOY THOMAS, Indian Institute of Science, FLOW CONTROL TEAM | The induced jet produced by a dielectric barrier discharge (DBD) setup is capable of preventing °ow separation on airfoils at high angles of attack. The ef-fect of various parameters on the velocity of this induced jet was studied experimentally. The glow discharge was created at atmospheric con-ditions by using a high voltage RF power supply. Flow visualization,photographic studies of the plasma, and hot-wire measurements on the induced jet were performed. The parametric investigation of the charac- teristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced. It was observed that the spanwise and streamwise overlap of the two electrodes,dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma.e®ect of the optimized con¯guration on the performance characteristics of an airfoil was studied experimentally.
Resumo:
We report the geometrical effect of graded buckled multiwalled carbon nanotube arrays on the electrical transport properties in the diffusive regime, via successive breakdown caused by the Joule heating. This breakdown occurs in the straighter region. Empirical relations involving the current-carrying ability, resistance, breakdown power, threshold voltage, diameter and length of carbon nanotube arrays are discussed on the basis of an extensive set of experimental data along with justification. The experimental results are corroborated by the density functional tight-binding calculations of electronic band structure. The band gap decreases as buckleness increases leading to the enhancement in the current-carrying ability and elucidating the role of buckleness in carbon nanotubes. Copyright (c) EPLA, 2012
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.
Resumo:
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.
Resumo:
Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.
Resumo:
Monodisperse colloidal gold-indium (AuIn2) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn2 intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn2 with particle size distribution of 3.7 +/- 1.0 nm and 5.0 +/- 1.6 nm, respectively. UV-visible spectral studies brought out the absence of SPR band in pure AuIn2 intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn2 intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag3In intermetallic nanoparticles with the dimension of less than 10 nm. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present a detailed direct numerical simulation of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields, and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.
Resumo:
The gas flows in micro-electro-mechanical systems possess relatively large Knudsen number and usually belong to the slip flow and transitional flow regimes. Recently the lattice Boltzmann method (LBM) was proposed by Nie et al. in Journal of Statistical Physics, vol. 107, pp. 279-289, in 2002 to simulate the microchannel and microcavity flows in the transitional flow regime. The present article intends to test the feasibility of doing so. The results of using the lattice Boltzmann method and the direct simulation Monte Carlo method show good agreement between them for small Kn (Kn = 0.0194), poor agreement for Kn = 0.194, and large deviation for Kn = 0.388 in simulating microchannel flows. This suggests that the present version of the lattice Boltzmann method is not feasible to simulate the transitional channel flow.
Resumo:
Consultoria de Orçamento e Fiscalização Financeira.
Resumo:
Consultoria de Orçamento e Fiscalização Financeira - Núcleo Trabalho, Previdência e Assistência Social.