975 resultados para Performance of construction materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ductility of concrete made with commercially available steel and synthetic fibres has been investigated. Flexural stress–deflection relationships have been used to determine: flexural strength, flexural toughness, equivalent flexural strength, and equivalent flexural strength ratio. The flexural toughness of concrete was found to increase considerably when steel and synthetic fibres were used. However, equal dosages of different fibres did not result in specimens with the same flexural toughness. Flexural toughness differences of almost 35 J existed even at the same fibre dosage. This also resulted in considerable differences in the minimum required ground supported slab thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an approach by which laboratory based testing and numerical modelling can be combined to predict the long term performance of a range of concretes exposed to marine environments. Firstly, a critical review of the test methods for assessing the chloride penetration resistance of concrete is given. The repeatability of the different test results is also included. In addition to the test methods, a numerical simulation model is used to explore the test data further to obtain long-term chloride ingress trends. The combined use of testing and modelling is validated with the help of long-term chloride ingress data from a North Sea exposure site. In summary, the paper outlines a methodology for determining the long term performance of concrete in marine environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in situ experiment in a full scale timber frame test building was carried out to compare the hygrothermal performance of Hemp and Stone Wool insulations of identical thermal conductivity. Hemp and Stone Wool insulations were installed in timber frame wall panels without vapour barrier. The comparison was made in terms of heat transfer properties, likelihood of mould growth and condensation. Step changes in internal relative humidity were performed to explore the effect of high and normal internal moisture load on the wall panels. No significant difference between the average equivalent thermal transmittance (U-values) of the panels incorporating Hemp and Stone Wool insulations was observed. The average equivalent U-values of the panels were closer to the calculated U-values of the panels based on the manufacturers’ declared thermal conductivity of Hemp and Stone Wool insulations. It was observed that the placement of heat flux sensor along the depth of the insulation had significant influence on the measured equivalent U-value of the panels during high internal moisture load. The frequency and likelihood of condensation was higher in the interface of Stone Wool and Oriented Strand Board (OSB). In terms of the parametric assessment of mould germination potential, relative humidity, temperature and exposure conditions in the insulation-OSB interfaces were found to be favourable to germination of mould spore. However, when the insulations were dismantled, no mould was visually detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Engenharia de Sistemas Ambientais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and fabrication of fiber based ammonia sensors employing Bromothymol blue and Chitosan as sensing elements are presented in this paper. In the presence of ammonia gas the absorption of Bromothymol blue changes while in the case of Chitosan the refractive index changes which in turn modulates the intensity of light propagating through a fiber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass fiber reinforced polymer (GFRP) rebars have been identified as an alternate construction material for reinforcing concrete during the last decade primarily due to its strength and durability related characteristics. These materials have strength higher than steel, but exhibit linear stress–strain response up to failure. Furthermore, the modulus of elasticity of GFRP is significantly lower than that of steel. This reduced stiffness often controls the design of the GFRP reinforced concrete elements. In the present investigation, GFRP reinforced beams designed based on limit state principles have been examined to understand their strength and serviceability performance. A block type rotation failure was observed for GFRP reinforced beams, while flexural failure was observed in geometrically similar control beams reinforced with steel rebars. An analytical model has been proposed for strength assessment accounting for the failure pattern observed for GFRP reinforced beams. The serviceability criteria for design of GFRP reinforced beams appear to be governed by maximum crack width. An empirical model has been proposed for predicting the maximum width of the cracks. Deflection of these GFRP rebar reinforced beams has been predicted using an earlier model available in the literature. The results predicted by the analytical model compare well with the experimental data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today's global economic conditions, improving the productivity of the construction industry is becoming more pressing than ever. Several factors impact the efficiency of construction operatives, but motivation is among the most important. Since low productivity is one of the significant challenges facing the construction industry in the State of Kuwait, the objective of this case study is to identify, explore, and rank the relative importance of the factors perceived to impact the motivational level of master craftsmen involved in primary construction trades. To achieve this objective, a structured questionnaire survey comprising 23 factors, which were shortlisted based on relevant previous research on motivation, the input of local industry experts, and numerous interviews with skilled operatives, was distributed to a large number of master craftsmen. Using the “Relative Importance Index” technique, the following prominent factors are identified: (1) payment delay; (2) rework; (3) lack of a financial incentive scheme; (4) the extent of change orders during execution; (5) incompetent supervisors; (6) delays in responding to Requests For Information (RFI); (7) overcrowding and operatives interface; (8) unrealistic scheduling and performance expectation; (9) shortage of materials on site; and (10) drawings quality level. The findings can be used to provide industry practitioners with guidance for focusing, acting upon, and controlling the critical factors influencing the performance of master craftsmen, hence, assist in achieving an efficient utilization of the workforce, and a reasonable level of competitiveness and cost effective operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cool materials are characterized by having a high solar reflectance r – which is able to reduce heat gains during daytime - and a high thermal emissivity ε that enables them to dissipate the heat absorbed throughout the day during night. Despite the concept of cool roofs - i.e. the application of cool materials to roof surfaces - is well known in US since 1990s, many studies focused on their performance in both residential and commercial sectors under various climatic conditions for US countries, while only a few case studies are analyzed in EU countries. The present work aims at analyzing the thermal benefits due to their application to existing office buildings located in EU countries. Indeed, due to their weight in the existing buildings stock, as well as the very low rate of new buildings construction, the retrofit of office buildings is a topic of great concern worldwide. After an in-depth characterization of the existing buildings stock in the EU, the book gives an insight into roof energy balance due to different technological solutions, showing in which cases and to what extent cool roofs are preferable. A detailed description of the physical properties of cool materials and their availability on the market provides a solid background for the parametric analysis carried out by means of detailed numerical models that aims at evaluating cool roofs performance for various climates and office buildings configurations. With the help of dynamic simulations, the thermal behavior of representative office buildings of the existing EU buildings stock is assessed in terms of thermal comfort and energy needs for air conditioning. The results, which consider several variations of building features that may affect the resulting energy balance, show how cool roofs are an effective strategy for reducing overheating occurrences and thus improving thermal comfort in any climate. On the other hand, potential heating penalties due to a reduction in the incoming heat fluxes through the roof are taken into account, as well as the aging process of cool materials. Finally, an economic analysis of the best performing models shows the boundaries for their economic convenience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Residential building construction activities, whether it is new build, repair or maintenance, consumes a large amount of natural resources. This has a negative impact on the environment in the form depleting natural resources, increasing waste production and pollution. Previous research has identified the benefits of preventing or reducing material waste, mainly in terms of the limited available space for waste disposal, and escalating costs associated with landfills, waste management and disposal and their impact on a  building company's profitability. There has however been little development internationally of innovative waste management strategies aimed at reducing the resource requirement of the construction process. The authors contend that embodied energy is a useful indicator of resource value. Using data provided by a regional high-volume residential builder in the State of Victoria, Australia, this paper identifies the various types of waste that are generated from the construction of a typical standard house. It was found that in this particular case, wasted amounts of materials were less than those found previously by others for cases in capital cities (5-10 per cent), suggesting that waste minimisation strategies are successfully being implemented. Cost and embodied energy savings from using materials with recycled content are potentially more beneficial in terms of embodied energy and resource depletion than waste minimisation strategies.