939 resultados para Perda de potência ativa
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Baseado em um controlador digital de sinais, o sistema de monitoramento e detecção da queima em tempo real proposto neste estudo realiza a aquisição das sinais RMS de emissão acústica e da potência ativa do motor de acionamento do rebolo. Essas ações são necessárias para realizar o cálculo de estatísticas que foram utilizadas em trabalhos científicos e mostraram-se eficientes na detecção da queima em processos de retiticação. Dessa forma, é possível atuar sobre a retificadora, interrompendo seu funcionamento ou realizando correções nas variáveis do processo.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper addresses the three-phase induction motor by a thermal analysis of its operation, under the gaze of the standards of the Brazilian Association of Technical Standards that deal with working arrangements (operating cycles) defined by appropriate tests and for each use of the motor basis of this study, emphasizing especially the fact of the first three cycles are the cycles with greater possibilities of use for scaling a three-phase induction motor for the main industrial processes, will also be made an analysis of the reasons why the three-phase induction motors have a loss of power at altitudes above 1000 m above sea level and some methods of how to define how a three phase induction motor can be used in one of the first three working arrangements
Resumo:
This paper addresses the three-phase induction motor by a thermal analysis of its operation, under the gaze of the standards of the Brazilian Association of Technical Standards that deal with working arrangements (operating cycles) defined by appropriate tests and for each use of the motor basis of this study, emphasizing especially the fact of the first three cycles are the cycles with greater possibilities of use for scaling a three-phase induction motor for the main industrial processes, will also be made an analysis of the reasons why the three-phase induction motors have a loss of power at altitudes above 1000 m above sea level and some methods of how to define how a three phase induction motor can be used in one of the first three working arrangements
Resumo:
The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.
Resumo:
Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.
Resumo:
Human development requires a broad balance between ecological, social and economic factors in order to ensure its own sustainability. In this sense, the search for new sources of energy generation, with low deployment and operation costs, which cause the least possible impact to the environment, has been the focus of attention of all society segments. To do so, the reduction in exploration of fossil fuels and the encouragement of using renewable energy resources for distributed generation have proved interesting alternatives to the expansion of the energy matrix of various countries in the world. In this sense, the wind energy has acquired an increasingly significant role, presenting increasing rates of power grid penetration and highlighting technological innovations such as the use of permanent magnet synchronous generators (PMSG). In Brazil, this fact has also been noted and, as a result, the impact of the inclusion of this source in the distribution and sub-transmission power grid has been a major concern of utilities and agents connected to Brazilian electrical sector. Thus, it is relevant the development of appropriate computational tools that allow detailed predictive studies about the dynamic behavior of wind farms, either operating with isolated load, either connected to the main grid, taking also into account the implementation of control strategies for active/reactive power generation and the keeping of adequate levels of voltage and frequency. This work fits in this context since it comprises mathematical and computational developments of a complete wind energy conversion system (WECS) endowed with PMSG using time domain techniques of Alternative Transients Program (ATP), which prides itself a recognized reputation by scientific and academic communities as well as by electricity professionals in Brazil and elsewhere. The modeling procedures performed allowed the elaboration of blocks representing each of the elements of a real WECS, comprising the primary source (the wind), the wind turbine, the PMSG, the frequency converter, the step up transformer, the load composition and the power grid equivalent. Special attention is also given to the implementation of wind turbine control techniques, mainly the pitch control responsible for keeping the generator under the maximum power operation point, and the vector theory that aims at adjusting the active/reactive power flow between the wind turbine and the power grid. Several simulations are performed to investigate the dynamic behavior of the wind farm when subjected to different operating conditions and/or on the occurrence of wind intensity variations. The results have shown the effectiveness of both mathematical and computational modeling developed for the wind turbine and the associated controls.
Resumo:
Neste trabalho é descrita a síntese de hidrazidas graxas derivadas da isoniazida e de ácidos graxos saturados, insaturados, poli-insaturados e hidroxilados, os quais posteriormente tiveram sua atividade antimicobacteriana in vitro avaliada frente às cepas do Micobacterium tuberculosis H37Rv (ATCC 27294), M. tuberculosis resistentes à isoniazida (INHr, ATCC 35822) e M. tuberculosis (INHr, 1896HF), e M. tuberculosis resistente à rifampicina (RIFr, ATCC 35338). A síntese dos compostos 3a-g, derivados dos ácidos graxos C16:0, 18:0, cis- 18:1, trans-18:1, 18:1(OH), 18:2, e 18:3, respectivamente, foi realizada na presença de (COCl)2, DMAP e isoniazida, e os rendimentos variaram entre 60–90%. A maioria dos compostos testados demonstrou atividade mais potente que a isoniazida contra todas as cepas de M. tuberculosis estudadas, com valores de CIM entre 0,0019–50 µg.mL-1 . No estudo de relação estrutura vs. atividade, para a cepa resistente a isoniazida, o aumento da cadeia graxa e do número de insaturações provocou uma perda na potência dos derivados testados. Para as demais cepas testadas, os valores de CIM parecem ser dependentes da cepa em estudo, não sendo evidenciada uma relação estrutura vs. atividade sistemática com relação ao arranjo estrutural da cadeia graxa. Entre os compostos testados, o derivado do ácido palmítico 3a parece representar um protótipo promissor para o desenvolvimento de fármacos antituberculose, tendo apresentado valores de CIM entre 0,003–0,125 µg.mL-1 .
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente trabalho é dedicado à simulação numérica de sistemas térmicos de potência. O trabalho é iniciado com a modelagem de um ciclo Rankine, dedicado à produção de energia elétrica, para o qual foi elaborado um programa de simulação com a linguagem de programação MATLAB. A partir desse primeiro caso, são apresentados os modelos empregados para representar os diversos componentes que formam o circuito, como o gerador de vapor, a turbina, o condensador e a bomba. Além desses componentes, são introduzidas as equações que representam o escoamento do fluido de trabalho, no caso a água, permitindo assim o cálculo da perda de carga nas diferentes canalizações do circuito, sendo também acoplado o funcionamento da bomba. Essa alternativa pennite uma melhor avaliação do trabalho despendido para operar o sistema. A modelagem do ciclo deixa então de ser exclusivamente tennodinâmica, e passa a incluir aspectos de mecânica de fluidos. Outras variantes desse ciclo simples são também modelados e simulados, incluindo ciclos Rankine regenerativos e com irreversibilidades. As simulações são efetuadas admitindo-se parâmetros de operação, como, potência da turbina, temperatura do vapor d'água na entrada da turbina e pressão do vapor d'água na saída da turbina, com a variante de fixar-se o título do vapor d'água na saída da turbina.
Resumo:
In this dissertation new models of propagation path loss predictions are proposed by from techniques of optimization recent and measures of power levels for the urban and suburban areas of Natal, city of Brazilian northeast. These new proposed models are: (i) a statistical model that was implemented based in the addition of second-order statistics for the power and the altimetry of the relief in model of linear losses; (ii) a artificial neural networks model used the training of the algorithm backpropagation, in order to get the equation of propagation losses; (iii) a model based on the technique of the random walker, that considers the random of the absorption and the chaos of the environment and than its unknown parameters for the equation of propagation losses are determined through of a neural network. The digitalization of the relief for the urban and suburban areas of Natal were carried through of the development of specific computational programs and had been used available maps in the Statistics and Geography Brazilian Institute. The validations of the proposed propagation models had been carried through comparisons with measures and propagation classic models, and numerical good agreements were observed. These new considered models could be applied to any urban and suburban scenes with characteristic similar architectural to the city of Natal