806 resultados para Pedagogy and knowledge
requirement analysis of information and knowledge management in postmodern perspective on curriculum
Resumo:
National Basic Research Program of China; Chinese Academy of Sciences; Information Society Technologies; Institute of Computing Technology, Chinese Academy of Sciences; Zhuhai National Hi-tech Industrial Development Zone
Resumo:
This report describes a system which maintains canonical expressions for designators under a set of equalities. Substitution is used to maintain all knowledge in terms of these canonical expressions. A partial order on designators, termed the better-name relation, is used in the choice of canonical expressions. It is shown that with an appropriate better-name relation an important engineering reasoning technique, propagation of constraints, can be implemented as a special case of this substitution process. Special purpose algebraic simplification procedures are embedded such that they interact effectively with the equality system. An electrical circuit analysis system is developed which relies upon constraint propagation and algebraic simplification as primary reasoning techniques. The reasoning is guided by a better-name relation in which referentially transparent terms are preferred to referentially opaque ones. Multiple description of subcircuits are shown to interact strongly with the reasoning mechanism.
Resumo:
Rowland, J. J. (2004) On Genetic Programming and Knowledge Discovery in Transcriptome Data. Proc. IEEE Congress on Evolutionary Computation, Portland, Oregon. pp 158-165. ISBN 0-7803-8515-2
Resumo:
The Internet and World Wide Web have had, and continue to have, an incredible impact on our civilization. These technologies have radically influenced the way that society is organised and the manner in which people around the world communicate and interact. The structure and function of individual, social, organisational, economic and political life begin to resemble the digital network architectures upon which they are increasingly reliant. It is increasingly difficult to imagine how our ‘offline’ world would look or function without the ‘online’ world; it is becoming less meaningful to distinguish between the ‘actual’ and the ‘virtual’. Thus, the major architectural project of the twenty-first century is to “imagine, build, and enhance an interactive and ever changing cyberspace” (Lévy, 1997, p. 10). Virtual worlds are at the forefront of this evolving digital landscape. Virtual worlds have “critical implications for business, education, social sciences, and our society at large” (Messinger et al., 2009, p. 204). This study focuses on the possibilities of virtual worlds in terms of communication, collaboration, innovation and creativity. The concept of knowledge creation is at the core of this research. The study shows that scholars increasingly recognise that knowledge creation, as a socially enacted process, goes to the very heart of innovation. However, efforts to build upon these insights have struggled to escape the influence of the information processing paradigm of old and have failed to move beyond the persistent but problematic conceptualisation of knowledge creation in terms of tacit and explicit knowledge. Based on these insights, the study leverages extant research to develop the conceptual apparatus necessary to carry out an investigation of innovation and knowledge creation in virtual worlds. The study derives and articulates a set of definitions (of virtual worlds, innovation, knowledge and knowledge creation) to guide research. The study also leverages a number of extant theories in order to develop a preliminary framework to model knowledge creation in virtual worlds. Using a combination of participant observation and six case studies of innovative educational projects in Second Life, the study yields a range of insights into the process of knowledge creation in virtual worlds and into the factors that affect it. The study’s contributions to theory are expressed as a series of propositions and findings and are represented as a revised and empirically grounded theoretical framework of knowledge creation in virtual worlds. These findings highlight the importance of prior related knowledge and intrinsic motivation in terms of shaping and stimulating knowledge creation in virtual worlds. At the same time, they highlight the importance of meta-knowledge (knowledge about knowledge) in terms of guiding the knowledge creation process whilst revealing the diversity of behavioural approaches actually used to create knowledge in virtual worlds and. This theoretical framework is itself one of the chief contributions of the study and the analysis explores how it can be used to guide further research in virtual worlds and on knowledge creation. The study’s contributions to practice are presented as actionable guide to simulate knowledge creation in virtual worlds. This guide utilises a theoretically based classification of four knowledge-creator archetypes (the sage, the lore master, the artisan, and the apprentice) and derives an actionable set of behavioural prescriptions for each archetype. The study concludes with a discussion of the study’s implications in terms of future research.
Resumo:
This thesis argues that examining the attitudes, perceptions, behaviors, and knowledge of a community towards their specific watershed can reveal their social vulnerability to climate change. Understanding and incorporating these elements of the human dimension in coastal zone management will lead to efficient and effective strategies that safeguard the natural resources for the benefit of the community. By having healthy natural resources, ecological and community resilience to climate change will increase, thus decreasing vulnerability. In the Pacific Ocean, climate and SLR are strongly modulated by the El Niño Southern Oscillation. SLR is three times the global average in the Western Pacific Ocean (Merrifield and Maltrud 2011; Merrifield 2011). Changes in annual rainfall in the Western North Pacific sub‐region from 1950-2010 show that islands in the east are getting much less than in the past, while the islands in the west are getting slightly more rainfall (Keener et al. 2013). For Guam, a small island owned by the United States and located in the Western Pacific Ocean, these factors mean that SLR is higher than any other place in the world and will most likely see increased precipitation. Knowing this, the social vulnerability may be examined. Thus, a case-study of the community residing in the Manell and Geus watersheds was conducted on the island of Guam. Measuring their perceptions, attitudes, knowledge, and behaviors should bring to light their vulnerability to climate change. In order to accomplish this, a household survey was administered from July through August 2010. Approximately 350 surveys were analysed using SPSS. To supplement this quantitative data, informal interviews were conducted with the elders of the community to glean traditional ecological knowledge about perceived climate change. A GIS analysis was conducted to understand the physical geography of the Manell and Geus watersheds. This information about the human dimension is valuable to CZM managers. It may be incorporated into strategic watershed plans, to better administer the natural resources within the coastal zone. The research conducted in this thesis is the basis of a recent watershed management plan for the Guam Coastal Management Program (see King 2014).
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However such models have a heavy dependency on real evacuation data in order to (a) identify the key processes and factors associated with evacuation, (b) quantify variables and parameters associated with the identified factors/processes and finally (c) validate the models. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise from three major data sources in order to address these issues. This paper describes the extraction and application of data from one of these sources - aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (aircraft accident statistics and knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK comprises four component sub-databases. These consist of the ACCIDENT (crash details), FLIGHT ATTENDANT (observations and actions of the flight attendants), FATALS (details concerning passenger fatalities) and PAX (observations and accounts from individual passengers) databases. AASK currently contains information from 25 survivable aviation accidents covering the period 4 April 1977 to 6 August 1995, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. In addition to aiding the development of aircraft evacuation models, AASK is also being used to challenge some of the myths which proliferate in the aviation safety industry such as, passenger exit selection during evacuation, nature and frequency of seat jumping, speed of passenger response and group dynamics. AASK can also be used to aid in the development of a more comprehensive approach to conducting post accident interviews, and will eventually be used to store the data directly.
Resumo:
This paper describes the AASK database. The AASK database is unique as it is a record of human behaviour during survivable aviation accidents. The AASK database is compiled from interview data compiled by agencies such as the NTSB and the AAIB. The database can be found on the website http://fseg.gre.ac.uk
Resumo:
The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of passenger accounts from survivable aviation accidents/incidents compiled from interview data collected by agencies such as the US NTSB. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It also plays a significant role in the development of the airEXODUS aircraft evacuation model, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes the latest version of the database (Version 4.0) and includes some analysis of passenger behavior during actual accidents/incidents.
Resumo:
This report concerns the development of the AASK V4.0 database (CAA Project 560/SRG/R+AD). AASK is the Aircraft Accident Statistics and Knowledge database, which is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from interviews of the occupants involved in aircraft accidents. The AASK database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. With support from the UK CAA (Project 277/SRG/R&AD), AASK V3.0 was developed. This was an on-line prototype system available over the internet to selected users and included a significantly increased number of passenger accounts compared with earlier versions, the introduction of cabin crew accounts, the introduction of fatality information and improved functionality through the seat plan viewer utility. The most recently completed AASK project (Project 560/SRG/R+AD) involved four main components: a) analysis of the data collected in V3.0; b) continued collection and entry of data into AASK; c) maintenance and functional development of the AASK database; and d) user feedback survey. All four components have been pursued and completed in this two-year project. The current version developed in the last year of the project is referred to as AASK V4.0. This report provides summaries of the work done and the results obtained in relation to the project deliverables.