962 resultados para Pattern-matching technique
Resumo:
This thesis examines management of business relationships during conflicts. The context of this study is the international political conflict which started in 2013 and is still affecting international trade relations in 2016. More specifically, this study researches the effects of the conflict in Finnish-Russian trade. The research aim is to identify the implications of a political conflict in the Finnish-Russian business relationships and networks. Furthermore, the study will explore how does a company adapt or overcome the challenges and barriers posed by the international business environment. This research combines relevant theories in management of business relationships and networks in order to review the research data through a critical research frame. The theoretical frameworks are different structures of business relationship development processes, various stages of interaction, and characteristics and functions of business relationships. Moreover, this study will examine the effect of interdependency, commitment and trust in trade relations. Also, what are the important exchange processes and how do these processes affect business relationship and overall performance of joint business operations. Qualitative single case study method was used in this research. Case company was a Finnish multinational company. To understand the changes, the data was collected and analysed through process research approach by pattern-matching and drawing temporal bracketing over two different periods of time, first period in years 2011-2013 and second period in years 2014-2016. Empirical data was collected through a semi-structured interview and additional data was collected from internal and external secondary data sources. The findings of the study confirmed the relationship between trade and conflict. However, the effects are not significant for a company in grocery retail industry which has had earlier experience in Russia and has managed its business relationships and operations effectively. Macroeconomic factors affect companies operating in foreign dynamic markets and in order to sustain changes and to adapt, companies should invest in their business relationships. Trust-based relationships and a higher level of commitment allow companies to have more efficient and beneficial outcomes before and during uncertainty. Furthermore, well-maintained and coordinated business relationships provide the ability to adapt and overcome challenges during uncertainty. Such relationships have information, financial and social exchange processes which allow the partnering firms to have successful business relationship management in dynamic market environments.
Resumo:
Les structures avec des lieurs sont très communes en informatique. Les langages de programmation et les systèmes logiques sont des exemples de structures avec des lieurs. La manipulation de lieurs est délicate, de sorte que l’écriture de programmes qui ma- nipulent ces structures tirerait profit d’un soutien spécifique pour les lieurs. L’environ- nement de programmation Beluga est un exemple d’un tel système. Nous développons et présentons ici un compilateur pour ce système. Parmi les programmes pour lesquels Beluga est spécialement bien adapté, plusieurs peuvent bénéficier d’un compilateur. Par exemple, les programmes pour valider les types (les "type-checkers"), les compilateurs et les interpréteurs tirent profit du soutien spécifique des lieurs et des types dépendants présents dans le langage. Ils nécessitent tous également une exécution efficace, que l’on propose d’obtenir par le biais d’un compilateur. Le but de ce travail est de présenter un nouveau compilateur pour Beluga, qui emploie une représentation interne polyvalente et permet de partager du code entre plusieurs back-ends. Une contribution notable est la compilation du filtrage de Beluga, qui est particulièrement puissante dans ce langage.
Resumo:
Les logiciels sont en constante évolution, nécessitant une maintenance et un développement continus. Ils subissent des changements tout au long de leur vie, que ce soit pendant l'ajout de nouvelles fonctionnalités ou la correction de bogues dans le code. Lorsque ces logiciels évoluent, leurs architectures ont tendance à se dégrader avec le temps et deviennent moins adaptables aux nouvelles spécifications des utilisateurs. Elles deviennent plus complexes et plus difficiles à maintenir. Dans certains cas, les développeurs préfèrent refaire la conception de ces architectures à partir du zéro plutôt que de prolonger la durée de leurs vies, ce qui engendre une augmentation importante des coûts de développement et de maintenance. Par conséquent, les développeurs doivent comprendre les facteurs qui conduisent à la dégradation des architectures, pour prendre des mesures proactives qui facilitent les futurs changements et ralentissent leur dégradation. La dégradation des architectures se produit lorsque des développeurs qui ne comprennent pas la conception originale du logiciel apportent des changements au logiciel. D'une part, faire des changements sans comprendre leurs impacts peut conduire à l'introduction de bogues et à la retraite prématurée du logiciel. D'autre part, les développeurs qui manquent de connaissances et–ou d'expérience dans la résolution d'un problème de conception peuvent introduire des défauts de conception. Ces défauts ont pour conséquence de rendre les logiciels plus difficiles à maintenir et évoluer. Par conséquent, les développeurs ont besoin de mécanismes pour comprendre l'impact d'un changement sur le reste du logiciel et d'outils pour détecter les défauts de conception afin de les corriger. Dans le cadre de cette thèse, nous proposons trois principales contributions. La première contribution concerne l'évaluation de la dégradation des architectures logicielles. Cette évaluation consiste à utiliser une technique d’appariement de diagrammes, tels que les diagrammes de classes, pour identifier les changements structurels entre plusieurs versions d'une architecture logicielle. Cette étape nécessite l'identification des renommages de classes. Par conséquent, la première étape de notre approche consiste à identifier les renommages de classes durant l'évolution de l'architecture logicielle. Ensuite, la deuxième étape consiste à faire l'appariement de plusieurs versions d'une architecture pour identifier ses parties stables et celles qui sont en dégradation. Nous proposons des algorithmes de bit-vecteur et de clustering pour analyser la correspondance entre plusieurs versions d'une architecture. La troisième étape consiste à mesurer la dégradation de l'architecture durant l'évolution du logiciel. Nous proposons un ensemble de m´etriques sur les parties stables du logiciel, pour évaluer cette dégradation. La deuxième contribution est liée à l'analyse de l'impact des changements dans un logiciel. Dans ce contexte, nous présentons une nouvelle métaphore inspirée de la séismologie pour identifier l'impact des changements. Notre approche considère un changement à une classe comme un tremblement de terre qui se propage dans le logiciel à travers une longue chaîne de classes intermédiaires. Notre approche combine l'analyse de dépendances structurelles des classes et l'analyse de leur historique (les relations de co-changement) afin de mesurer l'ampleur de la propagation du changement dans le logiciel, i.e., comment un changement se propage à partir de la classe modifiée è d'autres classes du logiciel. La troisième contribution concerne la détection des défauts de conception. Nous proposons une métaphore inspirée du système immunitaire naturel. Comme toute créature vivante, la conception de systèmes est exposée aux maladies, qui sont des défauts de conception. Les approches de détection sont des mécanismes de défense pour les conception des systèmes. Un système immunitaire naturel peut détecter des pathogènes similaires avec une bonne précision. Cette bonne précision a inspiré une famille d'algorithmes de classification, appelés systèmes immunitaires artificiels (AIS), que nous utilisions pour détecter les défauts de conception. Les différentes contributions ont été évaluées sur des logiciels libres orientés objets et les résultats obtenus nous permettent de formuler les conclusions suivantes: • Les métriques Tunnel Triplets Metric (TTM) et Common Triplets Metric (CTM), fournissent aux développeurs de bons indices sur la dégradation de l'architecture. La d´ecroissance de TTM indique que la conception originale de l'architecture s’est dégradée. La stabilité de TTM indique la stabilité de la conception originale, ce qui signifie que le système est adapté aux nouvelles spécifications des utilisateurs. • La séismologie est une métaphore intéressante pour l'analyse de l'impact des changements. En effet, les changements se propagent dans les systèmes comme les tremblements de terre. L'impact d'un changement est plus important autour de la classe qui change et diminue progressivement avec la distance à cette classe. Notre approche aide les développeurs à identifier l'impact d'un changement. • Le système immunitaire est une métaphore intéressante pour la détection des défauts de conception. Les résultats des expériences ont montré que la précision et le rappel de notre approche sont comparables ou supérieurs à ceux des approches existantes.
Resumo:
Cette thèse présente le résultat de plusieurs années de recherche dans le domaine de la génération automatique de résumés. Trois contributions majeures, présentées sous la forme d'articles publiés ou soumis pour publication, en forment le coeur. Elles retracent un cheminement qui part des méthodes par extraction en résumé jusqu'aux méthodes par abstraction. L'expérience HexTac, sujet du premier article, a d'abord été menée pour évaluer le niveau de performance des êtres humains dans la rédaction de résumés par extraction de phrases. Les résultats montrent un écart important entre la performance humaine sous la contrainte d'extraire des phrases du texte source par rapport à la rédaction de résumés sans contrainte. Cette limite à la rédaction de résumés par extraction de phrases, observée empiriquement, démontre l'intérêt de développer d'autres approches automatiques pour le résumé. Nous avons ensuite développé un premier système selon l'approche Fully Abstractive Summarization, qui se situe dans la catégorie des approches semi-extractives, comme la compression de phrases et la fusion de phrases. Le développement et l'évaluation du système, décrits dans le second article, ont permis de constater le grand défi de générer un résumé facile à lire sans faire de l'extraction de phrases. Dans cette approche, le niveau de compréhension du contenu du texte source demeure insuffisant pour guider le processus de sélection du contenu pour le résumé, comme dans les approches par extraction de phrases. Enfin, l'approche par abstraction basée sur des connaissances nommée K-BABS est proposée dans un troisième article. Un repérage des éléments d'information pertinents est effectué, menant directement à la génération de phrases pour le résumé. Cette approche a été implémentée dans le système ABSUM, qui produit des résumés très courts mais riches en contenu. Ils ont été évalués selon les standards d'aujourd'hui et cette évaluation montre que des résumés hybrides formés à la fois de la sortie d'ABSUM et de phrases extraites ont un contenu informatif significativement plus élevé qu'un système provenant de l'état de l'art en extraction de phrases.
Resumo:
Les analyses effectuées dans le cadre de ce mémoire ont été réalisées à l'aide du module MatchIt disponible sous l’environnent d'analyse statistique R. / Statistical analyzes of this thesis were performed using the MatchIt package available in the statistical analysis environment R.
Resumo:
In this paper the effectiveness of a novel method of computer assisted pedicle screw insertion was studied using testing of hypothesis procedure with a sample size of 48. Pattern recognition based on geometric features of markers on the drill has been performed on real time optical video obtained from orthogonally placed CCD cameras. The study reveals the exactness of the calculated position of the drill using navigation based on CT image of the vertebra and real time optical video of the drill. The significance value is 0.424 at 95% confidence level which indicates good precision with a standard mean error of only 0.00724. The virtual vision method is less hazardous to both patient and the surgeon
Resumo:
Feature tracking is a key step in the derivation of Atmospheric Motion Vectors (AMV). Most operational derivation processes use some template matching technique, such as Euclidean distance or cross-correlation, for the tracking step. As this step is very expensive computationally, often shortrange forecasts generated by Numerical Weather Prediction (NWP) systems are used to reduce the search area. Alternatives, such as optical flow methods, have been explored, with the aim of improving the number and quality of the vectors generated and the computational efficiency of the process. This paper will present the research carried out to apply Stochastic Diffusion Search, a generic search technique in the Swarm Intelligence family, to feature tracking in the context of AMV derivation. The method will be described, and we will present initial results, with Euclidean distance as reference.
Resumo:
One of the essential needs to implement a successful e-Government web application is security. Web application firewalls (WAF) are the most important tool to secure web applications against the increasing number of web application attacks nowadays. WAFs work in different modes depending on the web traffic filtering approach used, such as positive security mode, negative security mode, session-based mode, or mixed modes. The proposed WAF, which is called (HiWAF), is a web application firewall that works in three modes: positive, negative and session based security modes. The new approach that distinguishes this WAF among other WAFs is that it utilizes the concepts of Artificial Intelligence (AI) instead of regular expressions or other traditional pattern matching techniques as its filtering engine. Both artificial neural networks and fuzzy logic concepts will be used to implement a hybrid intelligent web application firewall that works in three security modes.
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.
Resumo:
A low-cost method is proposed to classify wine and whisky samples using a disposable voltammetric electronic tongue that was fabricated using gold and copper substrates and a pattern recognition technique (Principal Component Analysis). The proposed device was successfully used to discriminate between expensive and cheap whisky samples and to detect adulteration processes using only a copper electrode. For wines, the electronic tongue was composed of copper and gold working electrodes and was able to classify three different brands of wine and to make distinctions regarding the wine type, i.e., dry red, soft red, dry white and soft white brands. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
The aim of this thesis project is to develop the Traffic Sign Recognition algorithm for real time. Inreal time environment, vehicles move at high speed on roads. For the vehicle intelligent system itbecomes essential to detect, process and recognize the traffic sign which is coming in front ofvehicle with high relative velocity, at the right time, so that the driver would be able to pro-actsimultaneously on instructions given in the Traffic Sign. The system assists drivers about trafficsigns they did not recognize before passing them. With the Traffic Sign Recognition system, thevehicle becomes aware of the traffic environment and reacts according to the situation.The objective of the project is to develop a system which can recognize the traffic signs in real time.The three target parameters are the system’s response time in real-time video streaming, the trafficsign recognition speed in still images and the recognition accuracy. The system consists of threeprocesses; the traffic sign detection, the traffic sign recognition and the traffic sign tracking. Thedetection process uses physical properties of traffic signs based on a priori knowledge to detect roadsigns. It generates the road sign image as the input to the recognition process. The recognitionprocess is implemented using the Pattern Matching algorithm. The system was first tested onstationary images where it showed on average 97% accuracy with the average processing time of0.15 seconds for traffic sign recognition. This procedure was then applied to the real time videostreaming. Finally the tracking of traffic signs was developed using Blob tracking which showed theaverage recognition accuracy to 95% in real time and improved the system’s average response timeto 0.04 seconds. This project has been implemented in C-language using the Open Computer VisionLibrary.