996 resultados para Parnaiba Basin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lower Darling River and Great Darling Anabranch are located in south west New South Wales. Muddy waters meander over the grey soil floodplains past red dunes, spiky saltbush and gnarled red gums. These are the traditional lands of the Paakintji people. But the land and the river are no longer what the Paakintji once knew and fished...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To say ‘Back o’ Bourke’ means ‘miles from anywhere’ to most Australians, however the Barwon and Darling Rivers that pass by the townships of Brewarrina and Bourke, respectively, are at the heart of the Murray‐Darling Basin. These are the traditional lands of the Ngiyampaa, Murawari and Yuwalaraay peoples (refer Aboriginal language groups in the Bringing back the fish section at the back of this booklet). They fished the river and surrounding waterways and hunted the wetlands. The Ngiyampaa, Murawari and Yuwalaraay people have seen their land and the rivers change...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ovens River rises in the Victorian Alps where it is linked to significant freshwater meadows and marshes. It flows past Harrietville, Bright, Myrtleford and Wangaratta where it is joined by the King River on its way to meet the Murray near the top of Lake Mulwala. These the traditional lands of the Bangerang people and their neighbours the Taungurung and Yorta Yorta peoples. They have fished the river and surrounding waterways and hunted the wetlands. The ebb and flow of water guided their travels and featured in their stories. The Bangerang, Taungurung and Yorta Yorta have seen their land and the river change...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After gathering water from 23 river valleys, the Murray empties into Lakes Alexandrina and Albert before making its way to the Coorong and out the Murray Mouth to Encounter Bay in South Australia. The entire Murray‐Darling Basin is upstream. Everything that happens there affects what goes on here...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote dryland regions are characterised by sparse populations and socially marginalised voices which pose particular challenges to natural resource management. This paper considers the issue of how to achieve community engagement in regions with these characteristics. In doing so, the paper contributes to an expanding international research agenda focusing on the distinct characteristics of arid and semi-arid regions under the heading of 'dryland syndrome'. The paper draws on government liaison officer and local community perspectives of successful engagement in the case-study region of Lake Eyre Basin, Australia. The results demonstrate that widely recognised characteristics of successful engagement are required but insufficient for genuine engagement in remote dryland regions. In addition to building trust through community ownership, being inclusive, effective communication, and adequate resources, genuine community engagement in drylands also requires respecting the extreme conditions and extraordinary variability of these areas. Residents of dryland regions seek genuine engagement yet engage opportunistically when seasons are conducive and when tangible outcomes are visible. © 2011 The Authors. Geographical Research © 2011 Institute of Australian Geographers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter was developed as part of the ‘People, communities and economies of the Lake Eyre Basin’ project. It has been written for communities, government agencies and interface organisations involved in natural resource management (NRM) in the Lake Eyre Basin (LEB). Its purpose is to identify the key factors for successful community engagement processes relevant to the LEB and present tools and principles for successful engagement processes. The term ‘interface organisation’ is used here to refer to the diverse range of local and regional organisations (such as Catchment Committees or NRM Regional Bodies) that serve as linkages, or translators, between local communities and broader Australian and State Governments. The importance of fostering and harnessing effective processes of community engagement has been identified as crucial to building a prosperous future for rural and remote regions in Australia. The chapter presents an overview of the literature on successful community engagement processes for NRM, as well as an overview of the current NRM arrangements in the LEB. The main part of the chapter presents findings of the series of interviews conducted with the government liaison officers representing both state and federal organisations who are responsible for coordinating and facilitating regional NRM in the LEB, and with the members of communities of the LEB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial respiratory reduction of nitrous oxide (N2O) to dinitrogen (N2) via denitrification plays a key role within the global N-cycle since it is the most important process for converting reactive nitrogen back into inert molecular N2. However, due to methodological constraints, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across various ecosystems. We investigated N2, N2O and NO emissions from irrigated cotton fields within the Aral Sera Basin using the He/O2 atmosphere gas flow soil core technique and an incubation assay. NH4NO3 fertilizer, equivalent to 75 kg ha−1 and irrigation water, adjusting the water holding capacity to 70, 100 and 130% were applied to the incubation vessels to assess its influence on gaseous N emissions. Under soil conditions as they are naturally found after concomitant irrigation and fertilization, denitrification was the dominant process and N2 the main end product of denitrification. The mean ratios of N2/N2O emissions increased with increasing soil moisture content. N2 emissions exceeded N2O emissions by a factor of 5 ± 2 at 70% soil water holding capacity (WHC) and a factor of 55 ± 27 at 130% WHC. The mean ratios of N2O/NO emissions varied between 1.5 ± 0.4 (70% WHC) and 644 ± 108 (130% WHC). The magnitude of N2 emissions for irrigated cotton was estimated to be in the range of 24 ± 9 to 175 ± 65 kg-N ha−1season−1, while emissions of NO were only of minor importance (between 0.1 to 0.7 kg-N ha−1 season−1). The findings demonstrate that for irrigated dryland soils in the Aral Sera Basin, denitrification is a major pathway of N-loss and that substantial amounts of N-fertilizer are lost as N2 to the atmosphere for irrigated dryland soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide emissions were monitored at three sites over a 2-year period in irrigated cotton fields in Khorezm, Uzbekistan, a region located in the arid deserts of the Aral Sea Basin. The fields were managed using different fertilizer management strategies and irrigation water regimes. N2O emissions varied widely between years, within 1 year throughout the vegetation season, and between the sites. The amount of irrigation water applied, the amount and type of N fertilizer used, and topsoil temperature had the greatest effect on these emissions. Very high N2O emissions of up to 3000 μg N2O-N m−2 h−1 were measured in periods following N-fertilizer application in combination with irrigation events. These “emission pulses” accounted for 80–95% of the total N2O emissions between April and September and varied from 0.9 to 6.5 kg N2O-N ha−1.. Emission factors (EF), uncorrected for background emission, ranged from 0.4% to 2.6% of total N applied, corresponding to an average EF of 1.48% of applied N fertilizer lost as N2O-N. This is in line with the default global average value of 1.25% of applied N used in calculations of N2O emissions by the Intergovernmental Panel on Climate Change. During the emission pulses, which were triggered by high soil moisture and high availability of mineral N, a clear diurnal pattern of N2O emissions was observed, driven by daily changes in topsoil temperature. For these periods, air sampling from 8:00 to 10:00 and from 18:00 to 20:00 was found to best represent the mean daily N2O flux rates. The wet topsoil conditions caused by irrigation favored the production of N2O from NO3− fertilizers, but not from NH4+ fertilizers, thus indicating that denitrification was the main process causing N2O emissions. It is therefore argued that there is scope for reducing N2O emission from irrigated cotton production; i.e. through the exclusive use of NH4+ fertilizers. Advanced application and irrigation techniques such as subsurface fertilizer application, drip irrigation and fertigation may also minimize N2O emission from this regionally dominant agro-ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is led by scientists in conservation decision appraisal and brings together a group of experts working across the Lake Eyre Basin (LEB). The LEB covers a sixth of Australia, with an array of globally significant natural values that are threatened by invasive plants, among other things. Managers at various levels are investing in attempts to control, contain and eradicate these invasive plant species, under severe time and resources limitations. To date there has been no basin-wide assessment of which weed management strategies and locations provide the best investments for maximising outcomes for biodiversity per unit cost. Further, there has been no assessment of the extent of ecosystem intactness that may be lost without effective invasive plant species management strategies. Given that there are insufficient resources to manage all invasive plant species everywhere, this information has the potential to improve current investment decisions. Here, we provide a prioritisation of invasive plant management strategies in the LEB. Prioritisation was based on cost-effectiveness for biodiversity benefits. We identify the key invasive plant species to target to protect ecosystem intactness across the bioregions of the LEB, the level of investment required and the likely reduction in invasive species dominance gained per dollar spent on each strategy. Our focus is on strategies that are technically and socially feasible and reduce the likelihood that high impact invasive plant species will dominate native ecosystems, and therefore change their form and function. The outputs of this work are designed to help guide decision-making and further planning and investment in weed management for the Basin. Experts in weed management, policy-making, community engagement, biodiversity and natural values of the Basin, attended a workshop and agreed upon 12 strategies to manage invasive plants. The strategies focused primarily on 10 weeds which were considered to have a high potential for broad, significant impacts on natural ecosystems in the next 50 years and for which feasible management strategies could be defined. Each strategy consisted of one or more supporting actions, many of which were spatially linked to IBRA (Interim Biogeographical Regionalisation of Australia) bioregions. The first strategy was an over-arching recommendation for improved mapping, information sharing, education and extension efforts in order to facilitate the more specific weed management strategies. The 10 more specific weed management strategies targeted the control and/or eradication of the following high-impact exotic plants: mesquite, parkinsonia, rubber vine, bellyache bush, cacti, mother of millions, chinee apple, athel pine and prickly acacia, as well as a separate strategy for eradicating all invasive plants from one key threatened ecological community, the GAB (Great Artesian Basin dependant) mound springs. Experts estimated the expected biodiversity benefit of each strategy as the reduction in area that an invasive plant species is likely to dominate in over a 50-year period, where dominance was defined as more than 30% coverage at a site. Costs were estimated in present day terms over 50 years largely during follow up discussions post workshop. Cost-effectiveness was then calculated for each strategy in each bioregion by dividing the average expected benefit by the average annual costs. Overall, the total cost of managing 12 invasive plant strategies over the next 50 years was estimated at $1.7 billion. It was estimated that implementation of these strategies would result in a reduction of invasive plant dominance by 17 million ha (a potential 32% reduction), roughly 14% of the LEB. If only targeting Weeds of National Significance (WONS), the total cost was estimated to be $113 million over the next 50 years. Over the next 50 years, $2.3 million was estimated to eradicate all invasive plant species from the Great Artesian Basin Mound Springs threatened ecological community. Prevention and awareness programs were another key strategy targeted across the Basin and estimated at $17.5 million in total over 50 years. The cost of controlling, eradicating and containing buffel grass were the most expensive, over $1.5 billion over 50 years; this strategy was estimated to result in a reduction in buffel grass dominance of a million ha in areas where this species is identified as an environmental problem. Buffel grass has been deliberately planted across the Basin for pasture production and is by far the most widely distributed exotic species. Its management is contentious, having economic value to many graziers while posing serious threats to biodiversity and sites of high cultural and conservation interest. The strategy for containing and locally eradicating buffel grass was a challenge to cost based on expert knowledge, possibly because of the dual nature of this species as a valued pastoral grass and environmental weed. Based on our conversations with experts, it appears that control and eradication programs for this species, in conservation areas, are growing rapidly and that information on the most cost-effective strategies for this species will continue to develop over time. The top five most cost-effective strategies for the entire LEB were for the management of: 1) parkinsonia, 2) chinee apple, 3) mesquite, 4) rubber vine and 5) bellyache bush. Chinee apple and mother of millions are not WONS and have comparatively small populations within the semi-arid bioregions of Queensland. Experts felt that there was an opportunity to eradicate these species before they had the chance to develop into high-impact species within the LEB. Prickly acacia was estimated to have one of the highest benefits, but the costs of this strategy were high, therefore it was ranked 7th overall. The buffel grass strategy was ranked the lowest (10th) in terms of cost effectiveness. The top five most cost-effective strategies within and across the bioregions were the management of: 1) parkinsonia in the Channel Country, 2) parkinsonia in the Desert Uplands, 3) mesquite in the Mitchell Grass Downs, 4) parkinsonia in the Mitchell Grass Downs, and 5) mother of millions in the Desert Uplands. Although actions for several invasive plant species like parkinsonia and prickly acacia were concentrated in the Queensland part of the LEB, the actions involved investing in containment zones to prevent the spread of these species into other states. In the NT and SA bioregions of the LEB, the management of athel pine, parkinsonia and cacti were the main strategies. While outside the scientific research goals of study, this work highlighted a number of important incidental findings that led us to make the following recommendations for future research and implementation of weed management in the Basin: • Ongoing stakeholder engagement, extension and participation is required to ensure this prioritisation effort has a positive impact in affecting on-ground decision making and planning. • Short term funding for weed management was identified as a major reason for failure of current efforts, hence future funding needs to be secure and ongoing. • Improved mapping and information sharing is essential to implement effective weed management. • Due to uncertainties in the outcomes and impacts of management options, strategies should be implemented as part of an adaptive management program. The information provided in this report can be used to guide investment for controlling high-impact invasive plant species for the benefits of biodiversity conservation. We do not present a final prioritisation of invasive plant strategies for the LEB, and we have not addressed the cultural, socio-economic or spatial components necessary for an implementation plan. Cost-effectiveness depends on the objectives used; in our case we used the intactness of ecosystems as a surrogate for expected biodiversity benefits, measured by the extent that each invasive plant species is likely to dominate in a bioregion. When other relevant factors for implementation are considered the priorities may change and some actions may not be appropriate in some locations. We present the costs, ecological benefits and cost-effectiveness of preventing, containing, reducing and eradicating the dominance of high impact invasive plants through realistic management actions over the next 50 years. In doing so, we are able to estimate the size of the weed management problem in the LEB and provide expert-based estimates of the likely outcomes and benefits of implementing weed management strategies. The priorities resulting from this work provide a prospectus for guiding further investment in management and in improving information availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment performance of bioretention basins closely depends on hydrologic and hydraulic factors such as rainfall characteristics and inflow and outflow discharges. An in-depth understanding of the influence of these factors on water quality treatment performance can provide important guidance for effective bioretention basin design. In this paper, hydraulic and hydrologic factors impacting pollutant removal by a bioretention basin were assessed under field conditions. Outcomes of the study confirmed that the antecedent dry period plays an important role in influencing treatment performance. A relatively long antecedent dry period reduces nitrite and ammonium concentrations while increasing the nitrate concentration, which confirms that nitrification occurs within the bioretention basin. Additionally, pollutant leaching influences bioretention basin treatment performance, reducing the nutrients removal efficiency, which was lower for high rainfall events. These outcomes will contribute to a greater understanding of the treatment performance of bioretention basins, assisting in the design, operation and maintenance of these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na–Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na–HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous–Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls.