748 resultados para Parallel pathways
Resumo:
This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]
Resumo:
Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through Unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was Concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
During rat hepatocarcinogenesis preneoplastic lesions (PNL) emerge which may persist (pPNL) and be sites of progress to cancer or suffer remodeling (rPNL) tending to disappear. Cellular and molecular mechanisms involved in both phenotypes are not sufficiently elucidated. pPNL and rPNL cellular proliferation and apoptosis were evaluated in rats submitted to the resistant hepatocyte (RH) model, and an adjusted growth index (AGI) was established. p53, Bcl-2, and NF-kappa B p65 subunit expression was evaluated by immunohistochemistry in pPNL and rPNL. p65 expression and NF-kappa B activation was evaluated by Western blot assays in whole livers. A lower number of BrdU-stained hepatocyte nuclei/mm(2) and higher number of apoptotic bodies (AB) per mm(2) were observed in remodeling compared to pPNL. Cytoplasmic p53 accumulation is related to increased hepatocarcinoma malignancy. We observed that 71.3% pPNL and 25.4% rPNL (P < 0.05) presented p53 staining in the cytoplasm. Similarly, 67.7% pPNL and 23.1 % rPNL (P < 0.05) presented increased Bcl-2 staining. Thirty-two percent pPNL and 15.6% rPNL (P < 0.05) presented p65 staining. Compared to normal rats, increase (P < 0.05) of hepatic p65 expression and NF-kappa B activation in rats submitted to the RH model was observed. in agreement to previous studies hepatic pPNL and rPNL differ regarding cell proliferation and apoptosis. Moreover, persistence and remodeling involve differences in p53, Bcl-2, and NF-kappa B pathways. These data point to molecular pathways that may direct preneoplastic lesions to spontaneously regress or to progress to cancer.
Resumo:
Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
The cost of spatial join processing can be very high because of the large sizes of spatial objects and the computation-intensive spatial operations. While parallel processing seems a natural solution to this problem, it is not clear how spatial data can be partitioned for this purpose. Various spatial data partitioning methods are examined in this paper. A framework combining the data-partitioning techniques used by most parallel join algorithms in relational databases and the filter-and-refine strategy for spatial operation processing is proposed for parallel spatial join processing. Object duplication caused by multi-assignment in spatial data partitioning can result in extra CPU cost as well as extra communication cost. We find that the key to overcome this problem is to preserve spatial locality in task decomposition. We show in this paper that a near-optimal speedup can be achieved for parallel spatial join processing using our new algorithms.
Resumo:
Coset enumeration is a most important procedure for investigating finitely presented groups. We present a practical parallel procedure for coset enumeration on shared memory processors. The shared memory architecture is particularly interesting because such parallel computation is both faster and cheaper. The lower cost comes when the program requires large amounts of memory, and additional CPU's. allow us to lower the time that the expensive memory is being used. Rather than report on a suite of test cases, we take a single, typical case, and analyze the performance factors in-depth. The parallelization is achieved through a master-slave architecture. This results in an interesting phenomenon, whereby the CPU time is divided into a sequential and a parallel portion, and the parallel part demonstrates a speedup that is linear in the number of processors. We describe an early version for which only 40% of the program was parallelized, and we describe how this was modified to achieve 90% parallelization while using 15 slave processors and a master. In the latter case, a sequential time of 158 seconds was reduced to 29 seconds using 15 slaves.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
Molecular mechanisms of zinc potentiation were investigated in recombinant human alpha 1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [H-3]strychnine binding assays. In the wild-type (WT) GlyR, 1 mu M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1-M2 and M2-M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2-M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.
Resumo:
Kalata B1 is a member of a new family of polypeptides, isolated from. plants, which have a cystine knot structure embedded within an amide-cyclized backbone. This family of molecules are the largest known cyclic peptides, and thus, the mechanism of synthesis and folding is of great interest. To provide information about both these phenomena, we have synthesized kalata B1 using two distinct strategies. In the first, oxidation of the cysteine residues of a linear precursor peptide to form the correct disulfide bonds results in folding of the three-dimensional structure and preorganization of the termini in close proximity for subsequent cyclization. The second approach involved cyclization prior to oxidation. In the first method, the correctly folded peptide was produced only in the presence of partially hydrophobic solvent conditions. These conditions are presumably required to stabilize the surface-exposed hydrophobic residues. However,; in the synthesis,involving cyclization prior to oxidation, the cyclic reduced peptide folded to a significant degree in the absence of hydrophobic solvents and even more efficiently in the presence of hydrophobic solvents. Cyclization clearly has a major effect on the folding pathway and facilitates formation of the correctly disulfide-bonded form in aqueous solution; In addition to facilitating folding to a compact stable structure cyclization has an important effect on biological activity as assessed by hemolytic activity.