942 resultados para Panoramic projections. Virtual Environments. Navigation in 3D environments. Virtual Reality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

User interaction within a virtual environment may take various forms: a teleconferencing application will require users to speak to each other (Geak, 1993), with computer supported co-operative working; an Engineer may wish to pass an object to another user for examination; in a battle field simulation (McDonough, 1992), users might exchange fire. In all cases it is necessary for the actions of one user to be presented to the others sufficiently quickly to allow realistic interaction. In this paper we take a fresh look at the approach of virtual reality operating systems by tackling the underlying issues of creating real-time multi-user environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a framework for visual and haptic collaboration in 3D shared virtual spaces. Virtual objects can de declared as shared objects which visual and physical properties are rendered synchronously on each client computer. We introduce virtual tools which are shared objects associated with interactive and haptic devices. We implement the proposed ideas as new pilot versions of BS Collaborate server and BS Contact VRML/X3D viewer. In our collaborative framework, two pipelines-visual and haptic-complement each other to provide a simple and efficient solution to problem requiring collaboration in shared virtual spaces on the Web. We discuss two implementation frameworks based on the strong and thin server concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dementia is a multifaceted disorder that impairs cognitive functions, such as memory, language, and executive functions necessary to plan, organize, and prioritize tasks required for goal-directed behaviors. In most cases, individuals with dementia experience difficulties interacting with physical and social environments. The purpose of this study was to establish ecological validity and initial construct validity of a fire evacuation Virtual Reality Day-Out Task (VR-DOT) environment based on performance profiles as a screening tool for early dementia. Objective: The objectives were (1) to examine the relationships among the performances of 3 groups of participants in the VR-DOT and traditional neuropsychological tests employed to assess executive functions, and (2) to compare the performance of participants with mild Alzheimer’s-type dementia (AD) to those with amnestic single-domain mild cognitive impairment (MCI) and healthy controls in the VR-DOT and traditional neuropsychological tests used to assess executive functions. We hypothesized that the 2 cognitively impaired groups would have distinct performance profiles and show significantly impaired independent functioning in ADL compared to the healthy controls. Methods: The study population included 3 groups: 72 healthy control elderly participants, 65 amnestic MCI participants, and 68 mild AD participants. A natural user interface framework based on a fire evacuation VR-DOT environment was used for assessing physical and cognitive abilities of seniors over 3 years. VR-DOT focuses on the subtle errors and patterns in performing everyday activities and has the advantage of not depending on a subjective rating of an individual person. We further assessed functional capacity by both neuropsychological tests (including measures of attention, memory, working memory, executive functions, language, and depression). We also evaluated performance in finger tapping, grip strength, stride length, gait speed, and chair stands separately and while performing VR-DOTs in order to correlate performance in these measures with VR-DOTs because performance while navigating a virtual environment is a valid and reliable indicator of cognitive decline in elderly persons. Results: The mild AD group was more impaired than the amnestic MCI group, and both were more impaired than healthy controls. The novel VR-DOT functional index correlated strongly with standard cognitive and functional measurements, such as mini-mental state examination (MMSE; rho=0.26, P=.01) and Bristol Activities of Daily Living (ADL) scale scores (rho=0.32, P=.001). Conclusions: Functional impairment is a defining characteristic of predementia and is partly dependent on the degree of cognitive impairment. The novel virtual reality measures of functional ability seem more sensitive to functional impairment than qualitative measures in predementia, thus accurately differentiating from healthy controls. We conclude that VR-DOT is an effective tool for discriminating predementia and mild AD from controls by detecting differences in terms of errors, omissions, and perseverations while measuring ADL functional ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual reality exposure therapy (VRET) developed using immersive or semi-immersive virtual environments present a usability problem for practitioners. To meet practitioner requirements for lower cost and portability VRET programs must often be ported onto desktop environments such as the personal computer (PC). However, success of VRET has been shown to be linked to presence, and the environment's ability to evoke the same reactions and emotions as a real experience. It is generally accepted that high-end virtual environments ( VEs) are more immersive than desktop PCs, but level of immersion does not always predict level of presence. This paper reports on the impact on presence of porting a therapeutic VR application for Schizophrenia from the initial research environment of a semi-immersive curved screen to PC. Presence in these two environments is measured both introspectively and across a number of causal factors thought to underlie the experience of presence. Results show that the VR exposure program successfully made users feel they were present in both platforms. While the desktop PC achieved higher scores on presence across causal factors participants reported they felt more present in the curved screen environment. While comparison of the two groups was statistically significant for the PQ but not for the IPQ, subjective reports of experiences in the environments should be considered in future research as the success of VRET relies heavily on the emotional response of patients to the therapeutic program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mid Sweden University is currently researching how to capture more of a scene with a camera and how to create 3D images that does not require extra equipment for the viewer. In the process of this research they have started looking into simulating some of the tests that they wish to conduct. The goal of this project is to research whether the 3D graphics engine Unity3D could be used to simulate these tests, and to what degree. To test this a simulation was designed and implemented. The simulation used a split display system where each camera is directly connected to a part of the screen and using the position of the viewer the correct part of the camera feed is shown. Some literary studies were also done into how current 3D technology works. The simulation was successfully implemented and shows that simple simulation can be done in Unity3D, however, some problems were encountered in the process. The conclusion of the project show that there is much work left before simulation is viable but that there is potential in the technology and that the research team should continue to investigate it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the enabling effect of using blended learning and synchronous internet mediated communication technologies to improve learning and develop a Sense of Community (SOC) in a group of post-graduate students consisting of a mix of on-campus and off-campus students. Both quantitative and qualitative data collected over a number of years supports the assertion that the blended learning environment enhanced both teaching and learning. The development of a SOC was pivotal to the success of the blended approach when working with geographically isolated groups within a single learning environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In children, the pain and anxiety associated with acute burn dressing changes can be severe, with drug treatment alone frequently proving to be inadequate. Virtual reality (VR) systems have been successfully trialled in limited numbers of adult and paediatric burn patients. Augmented reality (AR) differs from VR in that it overlays virtual images onto the physical world, instead of creating a complete virtual world. This prospective randomised controlled trial investigated the use of AR as an adjunct to analgesia and sedation in children with acute burns. Forty-two children (30 male and 12 female), with an age range of 3–14 years (median age 9 years) and a total burn surface area ranging from 1 to 16% were randomised into a treatment (AR) arm and a control (basic cognitive therapy) arm after administration of analgesia and/or sedation. Pain scores, pulse rates (PR), respiratory rates (RR) and oxygen saturations (SaO2) were recorded pre-procedurally, at 10 min intervals and post-procedurally. Parents were also asked to grade their child's overall pain score for the dressing change. Mean pain scores were significantly lower (p = 0.0060) in the AR group compared to the control group, as were parental pain assessment scores (p = 0.015). Respiratory and pulse rates showed significant changes over time within groups, however, these were not significantly different between the two study groups. Oxygen saturation did not differ significantly over time or between the two study groups. This trial shows that augmented reality is a useful adjunct to pharmacological analgesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Player experience of spatiality in first-person, single-player games is informed by the maps and navigational aids provided by the game. This project uses textual analysis to examine the way these maps and navigational aids inform the experience of spatiality in Fallout 3, BioShock and BioShock 2. Spatiality is understood as trialectic, incorporating perceived, conceived and lived space, drawing on the work of Henri Lefebvre and Edward Soja. The most prominent elements of the games’ maps and navigational aids are analysed in terms of how they inform players’ experience of the games’ spaces. In particular this project examines the in-game maps these games incorporate, the waypoint navigation and fast-travel systems in Fallout 3, and the guide arrow and environmental cues in the BioShock games.