66 resultados para Panesthia Tryoni Tryoni
Resumo:
The ability of adult cotton bollworm, Helicoverpa armigera (Hubner), to distinguish and respond to enantiomers of alpha-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (-) compared to the (+) form, indicating greater affinity for the (-) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (-) forms of alpha-pinene. Moths with no odor conditioning showed an innate preference for (+)-alpha-pinene. This preference displayed by naive moths was not significantly different from the preferences of moths conditioned on (+)-alpha-pinene. However, we found a significant difference in preference between moths conditioned on the (-) enantiomer compared to naive moths and moths conditioned on (+)-alpha-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of alpha-pinene than different odors (e.g., phenylacetaldehyde versus (-)-alpha-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.
Resumo:
The dorsalis complex contains some of the most economically important fruit fly pests of the Asia-Pacific regions, including Bactrocera dorsalis, Bactrocera papayae and Bactrocera carambolae. These species are morphologically indistinct and genetically very similar. We describe the development of 12 microsatellite markers isolated from a representative of the dorsalis complex, B. papayae. We show the potential utility of the B. papayae microsatellites and a set of microsatellites isolated from Bactrocera tryoni as population and species markers for the dorsalis complex.
Resumo:
Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.
Resumo:
The frugivorous “true” fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is a major horticultural insect pest in Australia which significantly limits domestic and international market access for Australian horticultural produce. Citrus is one of the industries seriously affected by the fruit fly problem in Australia. This research investigated the effect of citrus peel essential oil chemicals on B. tryoni larval survival in five different commercially important Citrus species and cultivars as a way of better understanding fruit susceptibility. The fruits used were Murcott Mandarin, Navel orange, Eureka lemon, Valencia orange and yellow grapefruit. The essential oils of each citrus type were extracted using hydrodistillation and then mixed, at different concentrations, with artificial larval diets to which B. tryoni eggs were added. Surviving larvae were counted after five trial days. The same process was repeated for six essential oil components. Regression analysis of increasing oil concentration against larval survival showed that the crude oil blends of Navel orange, Eureka lemon and yellow grapefruit had significant negative effects on B. tryoni larval survival, but no such effects were seen for Murcott Mandarin and Valencia orange. Of the individual essential oil fractions, only D-limonene had a significant effect on B. tryoni larval survival, with this chemical being highly toxic at very low concentrations. The results of this study open up opportunities for incorporating B. tryoni resistance mechanisms into citrus through minor peel property changes which would not impact on the eating attributes of the fruit.