992 resultados para Paleo-ethnogrpahy
Resumo:
Glacial cycles during the Pleistocene reduced sea levels and created new land connections in northern Australia, where many currently isolated rivers also became connected via an extensive paleo-lake system, 'Lake Carpentaria'. However, the most recent period during which populations of freshwater species were connected by gene flow across Lake Carpentaria is debated: various 'Lake Carpentaria hypotheses' have been proposed. Here, we used a statistical phylogeographic approach to assess the timing of past population connectivity across the Carpentaria region in the obligate freshwater fish, Glossamia aprion. Results for this species indicate that the most recent period of genetic exchange across the Carpentaria region coincided with the mid- to late Pleistocene, a result shown previously for other freshwater and diadromous species. Based on these findings and published studies for various freshwater, diadromous and marine species, we propose a set of 'Lake Carpentaria' hypotheses to explain past population connectivity in aquatic species: (1) strictly freshwater species had widespread gene flow in the mid- to late Pleistocene before the last glacial maximum; (2) marine species were subdivided into eastern and western populations by land during Pleistocene glacial phases; and (3) past connectivity in diadromous species reflects the relative strength of their marine affinity.
Resumo:
Confusion exists as to the age of the Abor Volcanics of NE India. Some consider the unit to have been emplaced in the Early Permian, others the Early Eocene, a difference of ∼230 million years. The divergence in opinion is significant because fundamentally different models explaining the geotectonic evolution of India depend on the age designation of the unit. Paleomagnetic data reported here from several exposures in the type locality of the formation in the lower Siang Valley indicate that steep dipping primary magnetizations (mean = 72.7 ± 6.2°, equating to a paleo-latitude of 58.1°) are recorded in the formation. These are only consistent with the unit being of Permian age, possibly Artinskian based on a magnetostratigraphic argument. Plate tectonic models for this time consistently show the NE corner of the sub-continent >50°S; in the Early Eocene it was just north of the equator, which would have resulted in the unit recording shallow directions. The mean declination is counter-clockwise rotated by ∼94°, around half of which can be related to the motion of the Indian block; the remainder is likely due local Himalayan-age thrusting in the Eastern Syntaxis. Several workers have correlated the Abor Volcanics with broadly coeval mafic volcanic suites in Oman, NE Pakistan–NW India and southern Tibet–Nepal, which developed in response to the Cimmerian block peeling-off eastern Gondwana in the Early-Middle Permian, but we believe there are problems with this model. Instead, we suggest that the Abor basalts relate to India–Antarctica/India–Australia extension that was happening at about the same time. Such an explanation best accommodates the relevant stratigraphical and structural data (present-day position within the Himalayan thrust stack), as well as the plate tectonic model for Permian eastern Gondwana.
Resumo:
This paper presents an overview of the strengths and limitations of existing and emerging geophysical tools for landform studies. The objectives are to discuss recent technical developments and to provide a review of relevant recent literature, with a focus on propagating field methods with terrestrial applications. For various methods in this category, including ground-penetrating radar (GPR), electrical resistivity (ER), seismics, and electromagnetic (EM) induction, the technical backgrounds are introduced, followed by section on novel developments relevant to landform characterization. For several decades, GPR has been popular for characterization of the shallow subsurface and in particular sedimentary systems. Novel developments in GPR include the use of multi-offset systems to improve signal-to-noise ratios and data collection efficiency, amongst others, and the increased use of 3D data. Multi-electrode ER systems have become popular in recent years as they allow for relatively fast and detailed mapping. Novel developments include time-lapse monitoring of dynamic processes as well as the use of capacitively-coupled systems for fast, non-invasive surveys. EM induction methods are especially popular for fast mapping of spatial variation, but can also be used to obtain information on the vertical variation in subsurface electrical conductivity. In recent years several examples of the use of plane wave EM for characterization of landforms have been published. Seismic methods for landform characterization include seismic reflection and refraction techniques and the use of surface waves. A recent development is the use of passive sensing approaches. The use of multiple geophysical methods, which can benefit from the sensitivity to different subsurface parameters, is becoming more common. Strategies for coupled and joint inversion of complementary datasets will, once more widely available, benefit the geophysical study of landforms.Three cases studies are presented on the use of electrical and GPR methods for characterization of landforms in the range of meters to 100. s of meters in dimension. In a study of polygonal patterned ground in the Saginaw Lowlands, Michigan, USA, electrical resistivity tomography was used to characterize differences in subsurface texture and water content associated with polygon-swale topography. Also, a sand-filled thermokarst feature was identified using electrical resistivity data. The second example is on the use of constant spread traversing (CST) for characterization of large-scale glaciotectonic deformation in the Ludington Ridge, Michigan. Multiple CST surveys parallel to an ~. 60. m high cliff, where broad (~. 100. m) synclines and narrow clay-rich anticlines are visible, illustrated that at least one of the narrow structures extended inland. A third case study discusses internal structures of an eolian dune on a coastal spit in New Zealand. Both 35 and 200. MHz GPR data, which clearly identified a paleosol and internal sedimentary structures of the dune, were used to improve understanding of the development of the dune, which may shed light on paleo-wind directions.
Resumo:
Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.
Resumo:
Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.
Resumo:
The importance of supercontinents in our understanding of the geological evolution of the planet Earth has been recently emphasized. The role of paleomagnetism in reconstructing lithospheric blocks in their ancient paleopositions is vital. Paleomagnetism is the only quantitative tool for providing ancient latitudes and azimuthal orientations of continents. It also yields information of content of the geomagnetic field in the past. In order to obtain a continuous record on the positions of continents, dated intrusive rocks are required in temporal progression. This is not always possible due to pulse-like occurrences of dykes. In this work we demonstrate that studies of meteorite impact-related rocks may fill some gaps in the paleomagnetic record. This dissertation is based on paleomagnetic and rock magnetic data obtained from samples of the Jänisjärvi impact structure (Russian Karelia, most recent 40Ar-39Ar age of 682 Ma), the Salla diabase dyke (North Finland, U-Pb 1122 Ma), the Valaam monzodioritic sill (Russian Karelia, U-Pb 1458 Ma), and the Vredefort impact structure (South Africa, 2023 Ma). The paleomagnetic study of Jänisjärvi samples was made in order to obtain a pole for Baltica, which lacks paleomagnetic data from 750 to ca. 600 Ma. The position of Baltica at ca. 700 Ma is relevant in order to verify whether the supercontinent Rodinia was already fragmented. The paleomagnetic study of the Salla dyke was conducted to examine the position of Baltica at the onset of supercontinent Rodinia's formation. The virtual geomagnetic pole (VGP) from Salla dyke provides hints that the Mesoproterozoic Baltica - Laurentia unity in the Hudsonland (Columbia, Nuna) supercontinent assembly may have lasted until 1.12 Ga. Moreover, the new VGP of Salla dyke provides new constraint on the timing of the rotation of Baltica relative to Laurentia (e.g. Gower et al., 1990). A paleomagnetic study of the Valaam sill was carried out in order to shed light into the question of existence of Baltica-Laurentia unity in the supercontinent Hudsonland. Combined with results from dyke complex of the Lake Ladoga region (Schehrbakova et al., 2008) a new robust paleomagnetic pole for Baltica is obtained. This pole places Baltica on a latitude of 10°. This low latitude location is supported also by Mesoproterozoic 1.5 1.3 Ga red-bed sedimentation (for example the Satakunta sandstone). The Vredefort impactite samples provide a well dated (2.02 Ga) pole for the Kaapvaal Craton. Rock magnetic data reveal unusually high Koenigsberger ratios (Q values) in all studied lithologies of the Vredefort dome. The high Q values are now first time also seen in samples from the Johannesburg Dome (ca. 120 km away) where there is no impact evidence. Thus, a direct causative link of high Q values to the Vredefort impact event can be ruled out.