992 resultados para Palatini f(R) gravity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the action functional S[g, phi] = integral d4 x square-root -g[R/k(1 + klambdaphi2) + partial derivative(mu)phi partial derivative(mu)phi] describes, in general, one and the same classical theory whatever may be the value of the coupling constant lambda.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great simplicity attained by the Weyl-van der Waerden spinor technique in the evaluation of helicity invariant amplitudes is shown to apply in the cumbersome calculations within the framework of linearized gravitation. Once the graviton couplings to spin-0, 1/2, 1, and 3/2 particles are given, we exhibit the reach of this method by evaluating, as an example, the helicity amplitudes for the process electron + positron → photon + graviton in a very straightforward way. © 1994 Plenum Publishing Corporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of a triple master action we deduce here a linearized version of the new massive gravity (NMG) in arbitrary dimensions. The theory contains a 4th-order and a 2nd-order term in derivatives. The 4th-order term is invariant under a generalized Weyl symmetry. The action is formulated in terms of a traceless ημνΩμνρ=0 mixed symmetry tensor Ωμνρ=-Ωμρν and corresponds to the massive Fierz-Pauli action with the replacement e μν=∂ρΩμνρ. The linearized 3D and 4D NMG theories are recovered via the invertible maps Ωμνρ=Ïμνρβhβμ and Ωμνρ=ÏμνργδT [γδ]μ respectively. The properties h μν=hνμ and T[[γδ]μ]= 0 follow from the traceless restriction. The equations of motion of the linearized NMG theory can be written as zero curvature conditions ∂νTρμ-∂ρT νμ=0 in arbitrary dimensions. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viability of achieving gravitational consistent braneworld models in the framework of a f(R) theory of gravity is investigated. After a careful generalization of the usual junction conditions encompassing the embedding of the 3-brane into a f(R) bulk, we provide a prescription giving the necessary constraints in order to implement the projected second-order effective field equations on the brane. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.