997 resultados para Palatal expansion techniques
Resumo:
The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.
Resumo:
Free-piston-driven expansion tubes are capable of generating flaw conditions over a wide range of enthalpies ranging from orbital up to superorbital velocities. Initial optical measurements aimed at investigating the flow in such a facility are presented. Emission studies were used to identify impurities in the how and to investigate spectral regions that are accessible by optical techniques. At moderate enthalpies, it was found that significant radiation resulted from metallic contaminants. At high enthalpies, the spectrum consisted of a number of atomic lines together with a broadband background component indicative of the presence of electrons. The presence of this radiation may limit the applicability of optical techniques that require spectral regions free from the influence of atomic transitions or background radiation. Emission spectroscopy (through Stark broadened hydrogen lines) and two-wavelength holographic interferometry were used to measure the electron number density behind a bow shock on a blunt body at conditions where significant ionization was observed. They yielded average concentrations of (3 +/- 1) x 10(17) cm(-3) from the emission measurements and (3.8 +/- 0.6) x 10(17) cm(-3) from the interferometry.
Bacterial leakage in root canals obturated by different techniques. Part 1: microbiologic evaluation
Resumo:
Objective. This study compared the coronal bacterial leakage of root canals obturated by different techniques and with different lengths of obturation. Study design. The canals of palatal roots of 160 maxillary molars were instrumented and divided into different groups according to the obturation technique used (lateral condensation, Microseal system, Touch `n Heat + Ultrafil system, or Tagger`s hybrid technique) and the length of obturation (5 mm or 10 mm). The roots were impermeabilized, sterilized in ethylene oxide, and mounted on a device for evaluation of the bacterial leakage. Results. Tagger`s hybrid technique produced a statistically greater number of specimens with coronal leakage than the other techniques. There was no statistically significant difference between the lateral condensation, Touch `n Heat + Ultrafil, and Microseal groups. Root canals with 10 mm of obturation produced a statistically significantly smaller number of specimens with leakage than root canals with 5 mm of obturation. Conclusion. Tagger`s hybrid technique produced a greater number of specimens with coronal leakage than the other techniques, and a greater number of root canals with 5 mm of obturation leaked than root canals with 10 mm of obturation.
Resumo:
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
After the report of a second case of canine visceral leishmaniasis (CVL) in São Bento da Lagoa, Itaipuaçu, in the municipality of Maricá, Rio de Janeiro State, an epidemiological survey was carried out, through active search, totaling 145 dogs. Indirect immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA), and rapid chromatographic immunoassay based on dual-path platform (DPP(r)) were used to perform the serological examinations. The parasitological diagnosis of cutaneous fragments was performed by parasitological culture, histopathology, and immunohistochemistry. In the serological assessment, 21 dogs were seropositive by IFA, 17 by ELISA, and 11 by DPP(r), with sensitivity of 66.7%, 66.7% and 50%, and specificity of 87.2%, 90.2% and 94%, respectively for each technique. The immunohistochemistry of bone marrow using the cell-block technique presented the best results, with six positive dogs found, three of which tested negative by the other parasitological techniques. Leishmania sp. was isolated by parasitological culture in three dogs. The detection of autochthonous Leishmania infantum in Itaipuaçu, and the high prevalence of seropositive dogs confirm the circulation of this parasite in the study area and alert for the risk of expansion in the State of Rio de Janeiro.
Resumo:
Aim Niche conservatism, or the extent to which niches are conserved across space and time, is of special concern for the study of non-native species as it underlies predictions of invasion risk. Based on the occurrence of 28 non-native birds in Europe, we assess to what extent Grinnellian realized niches are conserved during invasion, formulate hypotheses to explain the variation in observed niche changes and test how well species distribution models can predict non-native bird occurrence in Europe. Location Europe. Methods To quantify niche changes, a recent method that applies kernel smoothers to densities of species occurrence in a gridded environmental space was used. This corrects for differences in the availability of environments between study areas and allows discrimination between 'niche expansion' into environments new to the species and 'niche unfilling', whereby the species only partially fills its niche in the invaded range. Predictions of non-native bird distribution in Europe were generated using several distribution modelling techniques. Results Niche overlap between native and non-native bird populations is low, but niche changes are smaller for species having a higher propagule pressure and that were introduced longer ago. Non-native birds in Europe occupy a subset of the environments they inhabit in their native ranges. Niche expansion into novel environments is rare for most species, allowing species distribution models to accurately predict invasion risk. Main conclusions Because of the recent nature of most bird introductions, species occupy only part of the suitable environments available in the invaded range. This signals that apart from purely ecological factors, patterns of niche conservatism may also be contingent on population-specific historical factors. These results also suggest that many claims of niche differences may be due to a partial filling of the native niche in the invaded range and thus do not represent true niche changes.
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.
Resumo:
Successful expansion of haematopoietic cells in ex vivo cultures will have important applications in transplantation, gene therapy, immunotherapy and potentially also in the production of non-haematopoietic cell types. Haematopoietic stem cells (HSC), with their capacity to both self-renew and differentiate into all blood lineages, represent the ideal target for expansion protocols. However, human HSC are rare, poorly characterized phenotypically and genotypically, and difficult to test functionally. Defining optimal culture parameters for ex vivo expansion has been a major challenge. We devised a simple and reproducible stroma-free liquid culture system enabling long-term expansion of putative haematopoietic progenitors contained within frozen human fetal liver (FL) crude cell suspensions. Starting from a small number of total nucleated cells, a massive haematopoietic cell expansion, reaching > 1013-fold the input cell number after approximately 300 d of culture, was consistently achieved. Cells with a primitive phenotype were present throughout the culture and also underwent a continuous expansion. Moreover, the capacity for multilineage lymphomyeloid differentiation, as well as the recloning capacity of primitive myeloid progenitors, was maintained in culture. With its better proliferative potential as compared with adult sources, FL represents a promising alternative source of HSC and the culture system described here should be useful for clinical applications.
Resumo:
Repeated passaging in conventional cell culture reduces pluripotency and proliferation capacity of human mesenchymal stem cells (MSC). We introduce an innovative cell culture method whereby the culture surface is dynamically enlarged during cell proliferation. This approach maintains constantly high cell density while preventing contact inhibition of growth. A highly elastic culture surface was enlarged in steps of 5% over the course of a 20-day culture period to 800% of the initial surface area. Nine weeks of dynamic expansion culture produced 10-fold more MSC compared with conventional culture, with one-third the number of trypsin passages. After 9 weeks, MSC continued to proliferate under dynamic expansion but ceased to grow in conventional culture. Dynamic expansion culture fully retained the multipotent character of MSC, which could be induced to differentiate into adipogenic, chondrogenic, osteogenic, and myogenic lineages. Development of an undesired fibrogenic myofibroblast phenotype was suppressed. Hence, our novel method can rapidly provide the high number of autologous, multipotent, and nonfibrogenic MSC needed for successful regenerative medicine.
Resumo:
Many researchers have concluded that secondary or delayed ettringite is responsible for serious premature deterioration of concrete highways. In some poorly performing Iowa concretes, ettringite is the most common secondary mineral but its role in premature deterioration is uncertain since some researchers still maintain that secondary ettringite does not itself cause deterioration. The current research project was designed to determine experimentally if it is possible to reduce secondary ettringite formation in concrete by treating the concrete with commercial crystallization inhibitor chemicals. The hypothesis is such that if the amount of ettringite is reduced, there will also be a concomitant reduction of concrete expansion and cracking. If both ettringite formation and deterioration are simultaneously reduced, then the case for ettringite induced expansion/cracking is strengthened. The experiment used four commercial inhibitors - two phosphonates, a polyacrylic acid, and a phosphate ester. Concrete blocks were subjected to continuous immersion, wet/dry and freeze/thaw cycling in sodium sulfate solutions and in sulfate solutions containing an inhibitor. The two phosphonate inhibitors, Dequest 2060 and Dequest 2010, manufactured by Monsanto Co., were effective in reducing ettringite nucleation and growth in concrete. Two other inhibitors, Good-rite K752 and Wayhib S were somewhat effective, but less so than the two phosphonates. Rapid experiments with solution growth inhibition of ettringite without the presence of concrete phases were used to explore the mechanisms of inhibition of this mineral. Reduction of new ettringite formation in concrete blocks also reduced expansion and cracking of the blocks. This relationship clearly links concrete expansion with this mineral - a conclusion that some research workers have disputed despite theoretical arguments for such a relationship and despite numerous observations of ettringite mineralization in prematurely deteriorated concrete highways. Secondary ettringite nucleation and growth must cause concrete expansion because the only known effect of the inhibitor chemicals is to reduce crystal nucleation and growth, and the inhibitors cannot in any other way be responsible for the reduction in expansion. The mechanism of operation of the inhibitors on ettringite reduction is not entirely clear but the solution growth experiments show that they prevent crystallization of a soluble ettringite precursor gel. The present study shows that ettringite growth alone is not responsible for expansion cracking because the experiments showed that most expansion occurs under wet/dry cycling, less under freeze/thaw cycling, and least under continuous soaking conditions. It was concluded from the different amounts of damage that water absorption by newly-formed, minute ettringite crystals is responsible for part of the observed expansion under wet/dry conditions, and that reduction of freeze resistance by ettringite filling of air-entrainment voids is also important in freeze/thaw environments.
Resumo:
Strategies for expanding hematopoietic stem cells (HSCs) include coculture with cells that recapitulate their natural microenvironment, such as bone marrow stromal stem/progenitor cells (BMSCs). Plastic-adherent BMSCs may be insufficient to preserve primitive HSCs. Here, we describe a method of isolating and culturing human BMSCs as nonadherent mesenchymal spheres. Human mesenspheres were derived from CD45- CD31- CD71- CD146+ CD105+ nestin+ cells but could also be simply grown from fetal and adult BM CD45--enriched cells. Human mesenspheres robustly differentiated into mesenchymal lineages. In culture conditions where they displayed a relatively undifferentiated phenotype, with decreased adherence to plastic and increased self-renewal, they promoted enhanced expansion of cord blood CD34+ cells through secreted soluble factors. Expanded HSCs were serially transplantable in immunodeficient mice and significantly increased long-term human hematopoietic engraftment. These results pave the way for culture techniques that preserve the self-renewal of human BMSCs and their ability to support functional HSCs.
Resumo:
Variante(s) de titre : Le Guide Sam pour l'expansion économique française dans le Levant