975 resultados para PV test facility


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing tempo of construction activity the world over creates heavy pressure on existing land space. The quest for new and competent site often points to the needs for improving existing sites, which are otherwise deemed unsuitable for adopting conventional foundations. This is accomplished by ground improvement methods, which are employed to improve the quality of soil incompetent in their natural state. Among the construction activities, a well-connected road network is one of the basic infrastructure requirements, which play a vital role for the fast and comfortable movement of inter- regional traffic in countries like India.One of the innovative ground improvement techniques practised all over the world is the use of geosynthetics, which include geotextiles, geomembranes, geogrids, etc . They offer the advantages such as space saving, enviromnental sensitivity, material availability, technical superiority, higher cost savings, less construction time, etc . Because of its fundamental properties, such as tensile strength, filtering and water permeability, a geotextile inserted between the base material and sub grade can function as reinforcement, a filter medium, a separation layer and as a drainage medium. Though polymeric geotextiles are used in abundant quantities, the use of natural geotextiles (like coir, jute, etc.) has yet to get momentum. This is primarily due to the lack of research work on natural geotextilcs for ground improvement, particularly in the areas of un paved roads. Coir geotextiles are best suited for low cost applications because of its availability at low prices compared to its synthetic counterparts. The proper utilisation of coir geotextilcs in various applications demands large quantities of the product, which in turn can create a boom in the coir industry. The present study aims at exploring the possibilities of utilising coir geotextiles for unpaved roads and embankments.The properties of coir geotextiles used have been evaluated. The properties studied include mass per unit area, puncture resistance, tensile strength, secant modulus, etc . The interfacial friction between soils and three types of coir geotextiles used was also evaluated. It was found that though the parameters evaluated for coir geotextiles have low values compared to polymeric geotextiles, the former are sufficient for use in unpaved roads and embankments. The frictional characteristics of coir geotextile - soil interfaces are extremely good and satisfy the condition set by the International Geosynthetic Society for varied applications.The performance of coir geotextiles reinforced subgrade was studied by conducting California Bearing Ratio (CBR) tests. Studies were made with coir geotextiles placed at different levels and also in multiple layers. The results have shown that the coir geotextile enhances the subgrade strength. A regression analysis was perfonned and a mathematical model was developed to predict the CBR of the coir geotextile reinforced subgrade soil as a function of the soil properties, coir geotextile properties, and placement depth of reinforcement.The effects of coir geotextiles on bearing capacity were studied by perfonning plate load tests in a test tan1e This helped to understand the functioning of geotextile as reinforcement in unpaved roads and embankments. The perfonnance of different types of coir geotextiles with respect to the placement depth in dry and saturated conditions was studied. The results revealed that the bearing capacity of coir-reinforced soil is increasing irrespective of the type of coir geotextiles and saturation condition.The rut behaviour of unreinforced and coir reinforced unpaved road sections were compared by conducting model static load tests in a test tank and also under repetitive loads in a wheel track test facility. The results showed that coir geotextiles could fulfill the functions as reinforcement and as a separator, both under static and repetitive loads. The rut depth was very much reduced whik placing coir geotextiles in between sub grade and sub base.In order to study the use of Coir geotextiles in improving the settlement characteristics, two types of prefabricated COlf geotextile vertical drains were developed and their time - settlement behaviour were studied. Three different dispositions were tried. It was found that the coir geotextile drains were very effective in reducing consolidation time due to radial drainage. The circular drains in triangular disposition gave maximum beneficial effect.In long run, the degradation of coir geotextile is expected, which results in a soil - fibre matrix. Hence, studies pertaining to strength and compressibility characteristics of soil - coir fibre composites were conducted. Experiments were done using coir fibres having different aspect ratios and in different proportions. The results revealed that the strength of the soil was increased by 150% to 200% when mixed with 2% of fibre having approximately 12mm length, at all compaction conditions. Also, the coefficient of consolidation increased and compression index decreased with the addition of coir fibre.Typical design charts were prepared for the design of coir geotextile reinforced unpaved roads. Some illustrative examples are also given. The results demonstrated that a considerable saving in subase / base thickness can he achieved with the use of eoir geotextiles, which in turn, would save large quantities of natural aggregates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit wurde ein räumlich bewegter pneumatischer Mehrachsenprüfstand als spezielle mechanische Variante eines Parallelroboters entwickelt, im Labor aufgebaut und in Rechnersimulationen sowie in Laborexperimenten regelungstechnisch untersucht. Für diesen speziellen Parallelroboter MAP-RTS-6 wurden Regelalgorithmen, die mittels moderner Verfahren der linearen und nichtlinearen Regelungstheorie abgeleitet wurden, hinsichtlich ihrer praktischen Anwendbarkeit, Echtzeitfähigkeit und Qualität entwickelt, implementiert und überprüft. Mit diesen Regelalgorithmen ist der MAP-RTS-6 in der Lage, große räumliche Transienten schnell und präzise nachzufahren. Der MAP-RTS-6 wird in erster Linie als räumlicher Bewegungsmanipulator für große nichtlineare Transienten (Translationen und Rotationen), als räumlicher Vibrationsprüfstand für starre und flexible Prüfkörper unterschiedlicher Konfigurationen und als Mechanismus für die Implementierung und experimentelle Überprüfung unterschiedlicher Regelungs- und Identifikationsalgorithmen und Sicherheitskonzepte verwendet. Die Voraussetzung zum Betrieb des Mehrachsenprüfstands für unterschiedliche redundante Antriebskonfigurationen mit sieben und acht Antrieben MAP-RTS-7 und MAP-RTS-8 wurde in dieser Arbeit geschaffen. Dazu zählen die konstruktive Vorbereitung der Prüfstandsmechanik und Pneumatik zum Anschluss weiterer Antriebe, die Vorbereitung zusätzlicher I/O-Schnittstellen zur Prüfstandselektronik und zum Regelungssystem und die Ableitung von Algorithmen zur analytischen Arbeitsraumüberwachung für redundante Antriebskonfigurationen mit sieben und acht Antrieben.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ein Luft-Erdwärmetauscher (L-EWT) kommt wegen seines niedrigen Energiebedarfs und möglicher guter Aufwandszahlen als umweltfreundliche Versorgungskomponente für Gebäude in Betracht. Dabei ist besonders vorteilhaft, dass ein L-EWT die Umgebungsluft je nach Jahreszeit vorwärmen oder auch kühlen kann. Dem zufolge sind L-EWT zur Energieeinsparung nicht nur für den Wohnhausbau interessant, sondern auch dort, wo immer noch große Mengen an fossiler Energie für die Raumkühlung benötigt werden, im Büro- und Produktionsgebäudesektor. Der Einsatzbereich eines L-EWT liegt zwischen Volumenströmen von 100 m3/h und mehreren 100.000 m3/h. Aus dieser Bandbreite und den instationären Randbedingungen entstehen erhebliche Schwierigkeiten, allgemeingültige Aussagen über das zu erwartende thermische Systemverhalten aus der Vielzahl möglicher Konstruktionsvarianten zu treffen. Hauptziel dieser Arbeit ist es, auf Basis umfangreicher, mehrjähriger Messungen an einer eigens konzipierten Testanlage und eines speziell angepassten numerischen Rechenmodells, Kennzahlen zu entwickeln, die es ermöglichen, die Betriebseigenschaften eines L-EWT im Planungsalltag zu bestimmen und ein technisch, ökologisch wie ökonomisch effizientes System zu identifizieren. Es werden die Kennzahlen elewt (Aufwandszahl), QV (Netto-Volumenleistung), ME (Meterertrag), sowie die Kombination aus v (Strömungsgeschwindigkeit) und VL (Metervolumenstrom) definiert, die zu wichtigen Informationen führen, mit denen die Qualität von Systemvarianten in der Planungsphase bewertet werden können. Weiterführende Erkenntnisse über die genauere Abschätzung von Bodenkennwerten werden dargestellt. Die hygienische Situation der durch den L-EWT transportierten Luft wird für die warme Jahreszeit, aufgrund auftretender Tauwasserbildung, beschrieben. Aus diesem Grund werden alle relevanten lufthygienischen Parameter in mehreren aufwendigen Messkampagnen erfasst und auf pathogene Wirkungen überprüft. Es wird über Sensitivitätsanalysen gezeigt, welche Fehler bei Annahme falscher Randbedingungen eintreten. Weiterhin werden in dieser Arbeit wesentliche, grundsätzliche Erkenntnisse aufbereitet, die sich aus der Betriebsbeobachtung und der Auswertung der umfangreich vorliegenden Messdaten mehrerer Anlagen ergeben haben und für die praktische Umsetzung und die Betriebsführung bedeutend sind. Hinweise zu Materialeigenschaften und zur Systemwirtschaftlichkeit sind detailliert aufgeführt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No Brasil, assim como em outros países que recebem abundantes quantidades de radiação solar durante todo o ano, há um grande potencial para os sistemas que usam a tecnologia fotovoltaica para promover o bombeamento de água. Entretanto, a escolha dos conjuntos de motores e bombas mais adequados para cada situação passa pela análise do desempenho dos sistemas de bombeamento. Portanto, devem ser analisadas tanto as melhores configurações de geradores fotovoltaicos destinados a operar os conjuntos formados pelos motores e bombas, quanto às eficiências das bombas e da conversão fotovoltaica. Nesse trabalho são apresentadas medidas e comparações do desempenho de dois sistemas de bombeamento diretamente acoplados a geradores fotovoltaicos. Para tanto, foi construída uma bancada destinada a realizar uma série de experimentos. Um dos sistemas usou uma bomba centrífuga acoplada a um gerador fotovoltaico formado por três módulos fotovoltaicos. O outro, utilizou uma bomba volumétrica de diafragma acoplada a um único módulo fotovoltaico. Os experimentos foram conduzidos em duas etapas distintas. A primeira foi feita com os motores acoplados a uma fonte de potência em corrente contínua e serviu para a determinação das curvas de desempenho de cada uma das bombas, das curvas dos sistemas, assim como das curvas de corrente (I) e de tensão (V) de cada um dos motores que acionavam as bombas. A segunda foi realizada com os sistemas acoplados diretamente aos geradores fotovoltaicos. A determinação da configuração dos geradores fotovoltaicos destinados a acionar os diferentes sistemas de bombeamento em análise nesse trabalho foi feita por meio da sobreposição das curvas de corrente e tensão dos motores e dos módulos fotovoltaicos. A parte experimental, estando os sistemas acoplados aos geradores, constou de medidas realizadas em intervalos de tempo de cinco segundos, para cada bomba e em várias alturas, das seguintes variáveis: temperatura ambiente, irradiância, temperatura dos módulos, corrente e tensão do motor, rotação do motor, temperatura da água, diferencial de pressão entre entrada e saída da bomba e vazão. As diversas alturas foram simuladas por meio da abertura e/ou fechamento de uma válvula de controle de vazão colocada na extremidade tubulação de descarga, operada manualmente. Os procedimentos adotados nessa dissertação permitiram caracterizar os sistemas de bombeamento propostos, assim como determinar quais os arranjos mais adequados para operar cada sistema. Verificou-se que o melhor arranjo para operar o conjunto motor e bomba centrífuga foi aquele formado por três módulos fotovoltaicos ligados em paralelo, enquanto que a melhor opção para operar o conjunto motor e bomba de diafragma foi com somente um módulo fotovoltaico. De posse dos dados medidos foi possível determinar as eficiências: instantâneas, máximas instantâneas e diárias da conversão fotovoltaica assim como dos conjuntos motores e bombas, em diferentes alturas. Relativamente à conversão fotovoltaica, verificou-se que o conjunto motor e bomba centrífuga operou com eficiência instantânea máxima de 5,74% e eficiência diária de 4,70%, enquanto que o conjunto motor e bomba volumétrica de diafragma operou com eficiência instantânea máxima de 7,66% e eficiência diária de 5,82%. Relativamente à eficiência dos conjuntos motores e bombas, verificou-se que o conjunto motor e bomba centrífuga operou com eficiência instantânea máxima de 19,19% e eficiência diária de 16,79%, enquanto que o conjunto motor e bomba volumétrica de diafragma operou com eficiência instantânea máxima de 38,88% e eficiência diária de 34,30%. Verificou-se ainda que a altura foi determinante na eficiência do conjunto motor e bomba centrífuga e pouco influenciou na eficiência do conjunto motor e bomba de diafragma. Além dessas, outras considerações sobre o comportamento dos sistemas de bombeamento ao longo de um dia também foram ser registrados, tais como: limiares de irradiância para início e final de vazão, correntes de pico ou de arranque dos motores e correntes de início de vazão ou escoamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we report on the evaluation of a superconducting fault current limiter (SFCL). It is consisted of a modular superconducting device combined with a short-circuited transformer with a primary copper winding connected in series to the power line and the secondary side short-circuited by the superconducting device. The basic idea is adding a magnetic component to contribute to the current limitation by the impedance reflected to the line after transition of the superconducting device. The evaluation tests were performed with a prospective current up to 2 kA, with the short-circuited transformer of 2.5 kVA, 220 V/660 V connected to a test facility of 100 kVA power capacity. The resistive SFCL using a modular superconducting device was tested without degradation for a prospective fault current of 1.8 kA, achieving the limiting factor 2.78; the voltage achieved 282 V corresponding to an electric field of 11 V/m. The test performed with the combined SFCL (xsuperconducting device + transformer) using series and toroidal transformers showed current limiting factor of 3.1 and 2 times, respectively. The test results of the combined SFCL with short-circuited transformer showed undesirable influence of the transformer impedance, resulting in reduction of the fault current level. © 2002-2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Messung eines möglichen elektrischen Dipolmoments des freien Neutrons erfordert genaustmögliche Kenntnis und Überwachung des magnetischen Feldes im Inneren der n2EDM-Spektrometerkammer. Die freie Spinpräzession von hyperpolarisiertem ³He kann verbunden mit einer Signalauslese mittels optisch gepumpter Cs-Magnetometer dazu genutzt werden, Messempfindlichkeit auf Magnetfeldschwankungen im Bereich weniger Femto-Tesla zu erhalten. Am Institut für Physik der Universität Mainz wurde eine ³He/Cs-Testanlage aufgebaut, um die Möglichkeiten der Signalauslese der ³He-Spinpräzession mittels eines lampengepumpten Cs-Magnetometers zu untersuchen. Darüber hinaus wurde eine ultrakompakte und transportable Polarisationseinheit entwickelt und installiert, welche ermöglicht, eine ³He-Hyperpolarisation von bis zu 55 Prozent zu erreichen. Im Anschluss wird das polarisierte 3He-Gas automatisiert komprimiert und in zwei Magnetometerzellen in Sandwichanordnung innerhalb der n2EDM-Spektrometerkammer gefüllt. In dieser Arbeit werden die Ergebnisse der ersten im Januar 2012 erfolgreich durchgeführten Messungen vorgestellt. Bei diesen Messungen wurde ³He-Gas in der ultrakompakten Polarisationseinheit hyperpolarisiert und über Führungsfelder eines Transfersystems in eine vierlagige Mumetall-Abschirmung transferiert. Im Anschluss konnte im Inneren der magnetischen Abschirmung die freie ³He-Spinpräzession mittels eines lampengepumpten Cs-Magnetometer eindeutig nachgewiesen werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paperwork compares the a numerical validation of the finite element model (FEM) with respect the experimental tests of a new generation wind turbine blade designed by TPI Composites Inc. called BSDS (Blade System Design Study). The research is focused on the analysis by finite element (FE) of the BSDS blade and its comparison with respect the experimental data from static and dynamic investigations. The goal of the research is to create a general procedure which is based on a finite element model and will be used to create an accurate digital copy for any kind of blade. The blade prototype was created in SolidWorks and the blade of Sandia National Laboratories Blade System Design Study was accurately reproduced. At a later stage the SolidWorks model was imported in Ansys Mechanical APDL where the shell geometry was created and modal, static and fatigue analysis were carried out. The outcomes of the FEM analysis were compared with the real test on the BSDS blade at Clarkson University laboratory carried out by a new procedures called Blade Test Facility that includes different methods for both the static and dynamic test of the wind turbine blade. The outcomes from the FEM analysis reproduce the real behavior of the blade subjected to static loads in a very satisfying way. A most detailed study about the material properties could improve the accuracy of the analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on the shims and at all combinations of mass flow and anode voltage. The fraction of singly charged xenon in the thruster plume varied between approximately 80% and 95% as the anode voltage and mass flow were changed, but did not show a significant change with shim current. Doubly and triply charged xenon made up the remainder of the ions detected. Ion energy exhibited a mixed behavior. The highest voltage present in the thruster largely dictated the most probable energy; either shim or anode voltage, depending on which was higher. The overall change in most probable ion energy was 20-30 eV, the majority of which took place while the shim voltage was higher than the anode voltage. The thrust, specific impulse, plume divergence, and ion energy all indicate that the thruster is capable of a higher performance output at high levels of discharge current on the shims. The lack of a change in efficiency and fraction of multiply charged ions indicate that the thruster can be operated at any level of current on the shims without detrimental effect, and thus a condensible propellant thruster can control the anode temperature without a decrease in efficiency or a change in the multiply charged ion fraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Chair of Transportation and Ware-housing at the University of Dortmund together with its industrial partner has developed and implemented a decentralized control system based on embedded technology and Internet standards. This innovative, highly flexible system uses autonomous software modules to control the flow of unit loads in real-time. The system is integrated into Chair’s test facility consisting of a wide range of conveying and sorting equipment. It is built for proof of concept purposes and will be used for further research in the fields of decentralized automation and embedded controls. This presentation describes the implementation of this decentralized control system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the Three Mile Island accident, an important focus of pressurized water reactor (PWR) transient analyses has been a small-break loss-of-coolant accident (SBLOCA). In 2002, the discovery of thinning of the vessel head wall at the Davis Besse nuclear power plant reactor indicated the possibility of an SBLOCA in the upper head of the reactor vessel as a result of circumferential cracking of a control rod drive mechanism penetration nozzle - which has cast even greater importance on the study of SBLOCAs. Several experimental tests have been performed at the Large Scale Test Facility to simulate the behavior of a PWR during an upper-head SBLOCA. The last of these tests, Organisation for Economic Co-operation and Development Nuclear Energy Agency Rig of Safety Assessment (OECD/NEA ROSA) Test 6.1, was performed in 2005. This test was simulated with the TRACE 5.0 code, and good agreement with the experimental results was obtained. Additionally, a broad analysis of an upper-head SBLOCA with high-pressure safety injection failed in a Westinghouse PWR was performed taking into account different accident management actions and conditions in order to check their suitability. This issue has been analyzed also in the framework of the OECD/NEA ROSA project and the Code Applications and Maintenance Program (CAMP). The main conclusion is that the current emergency operating procedures for Westinghouse reactor design are adequate for these kinds of sequences, and they do not need to be modified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stabilizing effect of grouping rotor blades in pairs has been assessed both, numerically and experimentally. The bending and torsion modes of a low aspect ratio high speed turbine cascade tested in the non-rotating test facility at EPFL (Ecole Polytechnique Fédérale de Lausanne) have been chosen as the case study. The controlled vibration of 20 blades in travelling wave form was performed by means of an electromagnetic excitation system, enabling the adjustement of the vibration amplitude and inter blade phase at a given frequency. Unsteady pressure transducers located along the blade mid-section were used to obtain the modulus and phase of the unsteady pressure caused by the airfoil motion. The stabilizing effect of the torsion mode was clearly observed both in the experiments and the simulations, however the effect of grouping the blades in pairs in the minimum damping at the tested frequency was marginal in the bending mode. A numerical tool was validated using the available experimental data and then used to extend the results at lower and more relevant reduced frequencies. It is shown that the stabilizing effect exists for the bending and torsion modes in the frequency range typical of low-pressure turbines. It is concluded that the stabilizing effect of this configuration is due to the shielding effect of the pressure side of the airfoil that defines the passage of the pair on the suction side of the same passage, since the relative motion between both is null. This effect is observed both in the experiments and simulations.