999 resultados para PSI particle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the southern hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm hr-1 (ranged from 1.79 – 7.78 nm hr-1). Case studies of the nucleation burst events were characterised including i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar and tracheobronchial-deposited submicrometer particle number and surface area data received by different age groups in Australia are shown. Activity patterns were combined with microenvironmental data through a Monte-Carlo method. Particle number distributions for the most significant microenvironments were obtained from our measurement survey data and people activity pattern data from the Australian Human Activity Pattern Survey were used. Daily alveolar particle number (surface area) dose received by all age groups was equal to 3.0×1010 particles (4.5×102 mm2), varying slightly between males and females. In contrast to gender, the lifestyle was found to significantly affect the daily dose, with highest depositions characterizing adults. The main contribution was due to indoor microenvironments. Finally a comparison between Italian and Australian people in terms of received particle dose was reported; it shows that different cooking styles can affect dose levels: higher doses were received by Italians, mainly due to their particular cooking activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the emission rate of ultrafine particles has been measured and quantified, there is very little information on the emission rates of ions and charged particles from laser printers. This paper describes a methodology that can be adopted for measuring the surface charge density on printed paper and the ion and charged particle emissions during operation of a high-emitting laser printer and shows how emission rates of ultrafine particles, ions and charged particles may be quantified using a controlled experiment within a closed chamber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the significance of sources around measurement sites, assist the development of control strategies for the important sources and mitigate the adverse effects of air pollution due to particle size. Methods: In this study, sampling was conducted at two sites located in urban/industrial and residential areas situated at roadsides along the Brisbane Urban Corridor. Ultrafine and fine particle measurements obtained at the two sites in June-July 2002 were analysed by Positive Matrix Factorization (PMF). Results: Six sources were present, including local traffic, two traffic sources, biomass burning, and two currently unidentified sources. Secondary particles had a significant impact at Site 1, while nitrates, peak traffic hours and main roads located close to the source also affected the results for both sites. Conclusions: This significant traffic corridor exemplifies the type of sources present in heavily trafficked locations and future attempts to control pollution in this type of environment could focus on the sources that were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying spatial and/or temporal trends in environmental modelling data requires that measurements be taken at multiple sites. The number of sites and duration of measurement at each site must be balanced against costs of equipment and availability of trained staff. The split panel design comprises short measurement campaigns at multiple locations and continuous monitoring at reference sites [2]. Here we present a modelling approach for a spatio-temporal model of ultrafine particle number concentration (PNC) recorded according to a split panel design. The model describes the temporal trends and background levels at each site. The data were measured as part of the “Ultrafine Particles from Transport Emissions and Child Health” (UPTECH) project which aims to link air quality measurements, child health outcomes and a questionnaire on the child’s history and demographics. The UPTECH project involves measuring aerosol and particle counts and local meteorology at each of 25 primary schools for two weeks and at three long term monitoring stations, and health outcomes for a cohort of students at each school [3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall aim of this project was to contribute to existing knowledge regarding methods for measuring characteristics of airborne nanoparticles and controlling occupational exposure to airborne nanoparticles, and to gather data on nanoparticle emission and transport in various workplaces. The scope of this study involved investigating the characteristics and behaviour of particles arising from the operation of six nanotechnology processes, subdivided into nine processes for measurement purposes. It did not include the toxicological evaluation of the aerosol and therefore, no direct conclusion was made regarding the health effects of exposure to these particles. Our research included real-time measurement of sub, and supermicrometre particle number and mass concentration, count median diameter, and alveolar deposited surface area using condensation particle counters, an optical particle counter, DustTrak photometer, scanning mobility particle sizer, and nanoparticle surface area monitor, respectively. Off-line particle analysis included scanning and transmission electron microscopy, energy-dispersive x-ray spectrometry, and thermal optical analysis of elemental carbon. Sources of fibrous and non-fibrous particles were included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper is on the measured particle number concentrations (PNC) as well as elemental and organic carbon in 17 primary schools. This study is part of the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)”, which aims to determine the relationship between exposure to traffic related ultrafine (UF) particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20Home.htm). To achieve this, air quality and health data are being collected at 25 schools within Brisbane Metropolitan Area in Australia over two years. This paper presents the general aspects of UF particles data and preliminary results from the first 17 schools (S01 to S17), tested from Oct 2010 to Dec 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 m ranged from 2.8×104 part cm-3 to 4.7×104 part cm-3 and from 2.0×104 part cm-3 to 3.5×104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eepidemiological studies have linked exposure to ultrafine particles (UFPs, <100 nm) to a variety of adverse health effects. To understand the mechanisms behind these effects, it is essential to measure aerosol deposition in the human respiratory tract. Electrical charge is a very important property as it may increase the particle deposition in human respiratory tract (Melanderi et al., 1983). However, the effect of charge on UFP deposition has seldom been investigated. The aim of this study is to investigate the effect of charge on UFP deposition in human lung, by conducting a pilot study using a tube-based experimental system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New particle formation (NPF) and growth have been observed in different environments all around the world and NPF affects the environment by forming cloud condensation nuclei (CCN). Detailed characterisation of NPF events in a subtropical urban environment is the main aim of this study. Particle size distribution (PSD) of atmospheric aerosol particles in range 9-414 nm were measured using a Scanning Mobility Particle Sizer (SMPS), within the framework of the “Ultrafine Particles from Traffic Emissions and Children’s Health” (UPTECH) study, which seeks to determine the relationship between exposure to traffic related ultrafine particles and children’s health (http://www.ilaqh.qut. edu.au/Misc/UPTECH%20Home.htm). The UPTECH study includes measurements of air quality, meteorological and traffic parameters in 25 randomly selected state primary school within the Brisbane metropolitan area, in Queensland, Australia. Measurements at 17 schools have been completed so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health effects of ultrafine particles (UFPs, <100 nm) have received increasing attention in recent years and particles from a variety of indoor sources, such as combustion or printer emissions, fall within this size range. Since people spend most of their time indoors, knowledge on aerosol deposition in the human respiratory tract is essential to minimise the health risks associated with environmental or occupational exposure to aerosol particles. Among the factors that could alter particle deposition, electrical charge is important as it may increase particle deposition in human respiratory tract (Melanderi et al., 1983), even when particles carry only a few charges. However, evidence showing such an increase in particle deposition for UFPs is sparse. The aim of this study was to investigate the effect of charge on the deposition of UFPs in the human lung by studying the deposition of charged particles in the conductive tubing of an experimental laboratory system.