986 resultados para PROVENANCE
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
As scientific workflows and the data they operate on, grow in size and complexity, the task of defining how those workflows should execute (which resources to use, where the resources must be in readiness for processing etc.) becomes proportionally more difficult. While "workflow compilers", such as Pegasus, reduce this burden, a further problem arises: since specifying details of execution is now automatic, a workflow's results are harder to interpret, as they are partly due to specifics of execution. By automating steps between the experiment design and its results, we lose the connection between them, hindering interpretation of results. To reconnect the scientific data with the original experiment, we argue that scientists should have access to the full provenance of their data, including not only parameters, inputs and intermediary data, but also the abstract experiment, refined into a concrete execution by the "workflow compiler". In this paper, we describe preliminary work on adapting Pegasus to capture the process of workflow refinement in the PASOA provenance system.
Resumo:
In e-Science experiments, it is vital to record the experimental process for later use such as in interpreting results, verifying that the correct process took place or tracing where data came from. The process that led to some data is called the provenance of that data, and a provenance architecture is the software architecture for a system that will provide the necessary functionality to record, store and use process documentation. However, there has been little principled analysis of what is actually required of a provenance architecture, so it is impossible to determine the functionality they would ideally support. In this paper, we present use cases for a provenance architecture from current experiments in biology, chemistry, physics and computer science, and analyse the use cases to determine the technical requirements of a generic, technology and application-independent architecture. We propose an architecture that meets these requirements and evaluate a preliminary implementation by attempting to realise two of the use cases.
Resumo:
The open provenance architecture (OPA) approach to the challenge was distinct in several regards. In particular, it is based on an open, well-defined data model and architecture, allowing different components of the challenge workflow to independently record documentation, and for the workflow to be executed in any environment. Another noticeable feature is that we distinguish between the data recorded about what has occurred, emphprocess documentation, and the emphprovenance of a data item, which is all that caused the data item to be as it is and is obtained as the result of a query over process documentation. This distinction allows us to tailor the system to separately best address the requirements of recording and querying documentation. Other notable features include the explicit recording of causal relationships between both events and data items, an interaction-based world model, intensional definition of data items in queries rather than relying on explicit naming mechanisms, and emphstyling of documentation to support non-functional application requirements such as reducing storage costs or ensuring privacy of data. In this paper we describe how each of these features aid us in answering the challenge provenance queries.
Resumo:
E-Science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed, it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards, not necessarily anticipated prior to execution. Scientists may also want to review and verify experiments performed by their colleagues. There are no existing frameworks for validating such experiments in today's e-Science systems. Users therefore have to rely on error checking performed by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions. The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested in a bioinformatics application that performs protein compressibility analysis.
Resumo:
The first Provenance Challenge was set up in order to provide a forum for the community to understand the capabilities of different provenance systems and the expressiveness of their provenance representations. To this end, a Functional Magnetic Resonance Imaging workflow was defined, which participants had to either simulate or run in order to produce some provenance representation, from which a set of identified queries had to be implemented and executed. Sixteen teams responded to the challenge, and submitted their inputs. In this paper, we present the challenge workflow and queries, and summarise the participants contributions.
Resumo:
Agent-oriented cooperation techniques and standardized electronic healthcare record exchange protocols can be used to combine information regarding different facets of a therapy received by a patient from different healthcare providers at different locations. Provenance is an innovative approach to trace events in complex distributed processes, dependencies between such events, and associated decisions by human actors. We focus on three aspects of provenance in agent-mediated healthcare systems: first, we define the provenance concept and show how it can be applied to agent-mediated healthcare applications; second, we investigate and provide a method for independent and autonomous healthcare agents to document the processes they are involved in without directly interacting with each other; and third, we show that this method solves the privacy issues of provenance in agent-mediated healthcare systems.
Resumo:
Current scientific applications are often structured as workflows and rely on workflow systems to compile abstract experiment designs into enactable workflows that utilise the best available resources. The automation of this step and of the workflow enactment, hides the details of how results have been produced. Knowing how compilation and enactment occurred allows results to be reconnected with the experiment design. We investigate how provenance helps scientists to connect their results with the actual execution that took place, their original experiment and its inputs and parameters.
Resumo:
Provenance refers to the past processes that brought about a given (version of an) object, item or entity. By knowing the provenance of data, users can often better understand, trust, reproduce, and validate it. A provenance-aware application has the functionality to answer questions regarding the provenance of the data it produces, by using documentation of past processes. PrIMe is a software engineering technique for adapting application designs to enable them to interact with a provenance middleware layer, thereby making them provenance-aware. In this article, we specify the steps involved in applying PrIMe, analyse its effectiveness, and illustrate its use with two case studies, in bioinformatics and medicine.
Resumo:
The Open Provenance Model is a model of provenance that is designed to meet the following requirements: (1) To allow provenance information to be exchanged between systems, by means of a compatibility layer based on a shared provenance model. (2) To allow developers to build and share tools that operate on such a provenance model. (3) To define provenance in a precise, technology-agnostic manner. (4) To support a digital representation of provenance for any 'thing', whether produced by computer systems or not. (5) To allow multiple levels of description to coexist. (6) To define a core set of rules that identify the valid inferences that can be made on provenance representation. This document contains the specification of the Open Provenance Model (v1.1) resulting from a community-effort to achieve inter-operability in the Provenance Challenge series.