580 resultados para PROPYLENE POLYMERIZATIONS
Resumo:
A crosslinking strategy was used to improve the thermal and mechanical performance of poly(propylene carbonate) (PPC): PPC bearing a small moiety of pendant C=C groups was synthesized by the terpolymerization of allyl glycidyl ether (AGE), propylene oxide (PO), and carbon dioxide (CO2). Almost no yield loss was found in comparison with that of the PO and CO2 copolymer when the concentration of AGE units in the terpolymer was less than 5 mol %. Once subjected to UV-radiation crosslinking, the crosslinked PPC film showed an elastic modulus 1 order of magnitude higher than that of the uncrosslinked one. Moreover, crosslinked PPC showed hot-set elongation at 65 degrees C of 17.2% and permanent deformation approaching 0, whereas they were 35.3 and 17.2% for uncrosslinked PPC, respectively. Therefore, the PPC application window was enlarged to a higher temperature zone by the crosslinking strategy.
Resumo:
Poly(propylene carbonate) (PPC) with number average molecular weight (M-n) higher than 200 kg/mol was prepared via the terpolymerization of carbon dioxide, propylene oxide and diepoxide using Y(CCl3OO)(3)-ZnEt2-glycerine coordination catalyst. When equimolar ZnEt2 and diepoxide were used, double propagation active species were generated in situ by nucleophilic attack of metal alkoxide on diepoxide, leading to PPC of doubled M-n value. The molecular weight of PPC has dramatic influence on its thermal and mechanical performances. PPC with M of 227 kg/mol showed modulus of 6900 MPa, while the modulus of PPC with M-n of 109 kg/mol was only 4300 MPa. Moreover, when M-n increased from 109 to 227 kg/mol, a 37 degrees C increase of the onset degradation temperature was observed.
Resumo:
Preparation of poly(vinylidene fluoride-co-hexafluoro propylene) (F2.6) flat-sheet asymmetric porous membrane has been studied for the first time. Factors affecting F2.6 membrane pore structure and permeate performance, such as macromolecule pore formers (polyethylene glycol-400, 1000, 1540, 2000 and 6000), the small molecule former (glycerol), swelling agent (trimethyl phosphate) in casting solution, precipitating bath component and temperature, exposure time and ambient humidity, were investigated in detail. Average pore radius and porosity were used to characterize F2.6 membrane structure, and respectively, determined by ultrafiltration and gravimetric method for the wet membrane. Morphology of the resultant membranes was observed by scanning electronic microscopy (SEM). Final test on permeate performance of F2.6 porous membrane was carried out by a direct contact membrane distillation (DCMD) setup. The experimental F2.6 membrane exhibits a higher distilled flux than PVDF membrane under the same operational situations. The determination of contact angle to distilled water also reveals higher hydrophobic nature than that of PVDF membrane.
Resumo:
Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
Maleic anhydride end capped poly(propylene carbonate) (PPC-MA) was blended with ethyl cellulose (EC) by casting from dichloromethane solutions. The thermotropic liquid crystallinity, thermal decomposition behavior, and aggregated structure were investigated by differential scanning calorimetry (DSC), thermogravimetry (TGA), and wide angle X-ray diffraction (WAXD). DSC exhibits thermotropic liquid crystallinity in the rich EC composition range. TGA shows that thermal decomposition temperatures were elevated upon interfusing EC into PPC-MA. WAXD corroborates that EC and PPC-MA/EC blend films cast from dilute dichloromethane solution possessed cholesteric liquid crystalline structure in the rich EC composition range, and that dilution of PPC-MA with EC increased the dimension of noncrystalline region, leading to a more ordered packed structure.
Resumo:
In order to improve its thermal stability, poly(propylene carbonate)(PPC) was end-capped by different active agents. Thermogravimetric data show that the degradation temperature of uncapped PPC was lower than that of end-capped PPC. The kinetic parameters of thermal degradation of uncapped and end-capped PPC were calculated according to Chang's method. The results show that different mechanisms operate during the whole degradation temperature range for uncapped PPC. In the first stage, chain unzipping dominates the degradation. With increasing temperature, competing multi-step reactions occur. In the last stage, random chain scission plays an important role in degradation. For end-capped PPC, random chain scission dominates the whole degradation process.
Resumo:
Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.
Resumo:
Reactive compatibilization of ethylene-propylene copolymer functionalized with allyl (3-isocyanato-4-tolyl) carbamate (TAI) isocyanate (EPM-g-TAI) and polyamide 6 (PA6) was investigated in this paper, FTIR analysis revealed the evidence of a chemical reaction between the end groups of PA6 and EPM-g-TAI. Thermal, rheological, morphological, and mechanical properties of the resultant system were examined, DSC analysis indicated that the crystallization of PA6 in Pa6/EPM-g-TAI blends was inhibited, due to the chemical reaction that occurs at the interface of PA6 and EPM-g-TAI. Rheological measurement showed that complex viscosity and storage modulus of PA6/EPM-g-TAI were both dramatically enhanced compared to those of PA6/EPM at the same blending composition. After examining the morphology of both blending systems, smaller particile sizes, more homogeneous distribution of domains and improved interfacial adhesion between matrix and domains were observed in the compatibilized system. Mechanical properties such as tensile strength. Young's modulus, flexural strength and modulus, as well as notched and un-notched impact strength of PA6/EPM-g-TAI blends were also found to improve gradually with increasing the content of grafted TAI.
Resumo:
An ethylene-propylene copolymer (EPM) was functionalized with an iso cyanate-bearing unsaturated monomer, allyl(3-isocyanate-4-tolyl) carbamate (TAI), with dicumyl peroxide as an initiator in a xylene solution. Fourier transform infrared (FTIR) was used to confirm the formation of EPM-g-TAI. The peak at 2273 cm(-1), characteristic of -NCO groups in EPM-g-TAI, revealed evidence of grafting. The grafting degree was determined with both chemical titration and FTIR. The grafting degree could be adjusted, and the maximum was over 6 wt % without any gelation. The molar mass distribution of EPM-g-TAI was narrower than that of EPM. The rheological behavior of both EPM-g-TAI and EPM was investigated with a rotational rheometer. The apparent viscosity of EPM-g-TAI was higher than that of EPM and increased with an increasing grafting degree of TAI. Surface analysis by contact-angle measurements showed that contact angles of EPM-g-TAI samples to a given polar liquid decreased with an increasing grafting degree of TAI. We also obtained the dispersion component of the surface free energy (gamma(S)(d)), the polar component of the surface free energy (gamma(S)(d)), and the total surface free energy (gamma(S) = gamma(S)(d) + gamma(S)(p)) of the grafted EPM. These parameters increased with the enhancement of the grafting degree, which gave us a quantitative estimation of the polar contribution of the grafted TAI to the total surface free energy of EPM-g-TAI.
Resumo:
Copolymerization of carbon dioxide and propylene oxide was carried out employing (RC6H4COO)(3)Y/glycerin/ZnEt2 (R = -H, -CH3, NO2, -OH) ternary catalyst systems. The feature of yttrium carboxylates (ligand, substituent and its position on the aromatic ring) is of great importance in the final copolymerization. Appropriate design of substituent and position of the ligand in benzoate-based yttrium complex can adjust the microstructure of aliphatic polycarbonate in a moderate degree, where the head-to-tail linkage in the copolymer is adjustable from 68.4 to 75.4%. The steric factor of the ligand in the yttrium complex is crucial for the molecular weight distribution of the copolymer, probably due to the fact that the substituent at 2 and 4-position would disturb the coordination or insertion of the monomer, lead the copolymer with broad molecular distribution. Based on the study of ultraviolet-visible spectra of the ternary catalyst in various solvents, it seems that the absorption band at 240-255 nm be closely related to the active species of the rare earth ternary catalysts.
Resumo:
The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst, It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)(3), ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 degreesC in a 8 h reaction period.
Resumo:
The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.
Resumo:
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.